These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dissecting Mechanoenzymatic Properties of Processive Myosins with Ultrafast Force-Clamp Spectroscopy. Gardini L; Kashchuk AV; Pavone FS; Capitanio M J Vis Exp; 2021 Jul; (173):. PubMed ID: 34279513 [TBL] [Abstract][Full Text] [Related]
3. In vitro single-molecule manipulation studies of viral DNA replication. Bocanegra R; Plaza G A I; Ibarra B Enzymes; 2021; 49():115-148. PubMed ID: 34696830 [TBL] [Abstract][Full Text] [Related]
4. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions. van Mameren J; Wuite GJL; Heller I Methods Mol Biol; 2018; 1665():3-23. PubMed ID: 28940061 [TBL] [Abstract][Full Text] [Related]
5. Biophysical measurements on axonemal dyneins. Kojima H; Toba S; Sakakibara H; Oiwa K Methods Cell Biol; 2009; 92():83-105. PubMed ID: 20409800 [TBL] [Abstract][Full Text] [Related]
6. Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers. Greenberg MJ; Shuman H; Ostap EM Methods Mol Biol; 2017; 1486():483-509. PubMed ID: 27844441 [TBL] [Abstract][Full Text] [Related]
8. Single-Molecule Analysis and Engineering of DNA Motors. Mohapatra S; Lin CT; Feng XA; Basu A; Ha T Chem Rev; 2020 Jan; 120(1):36-78. PubMed ID: 31661246 [TBL] [Abstract][Full Text] [Related]
9. Single-Molecule Mechanochemical Sensing. Hu C; Tahir R; Mao H Acc Chem Res; 2022 May; 55(9):1214-1225. PubMed ID: 35420417 [TBL] [Abstract][Full Text] [Related]
10. POTATO: Automated pipeline for batch analysis of optical tweezers data. Buck S; Pekarek L; Caliskan N Biophys J; 2022 Aug; 121(15):2830-2839. PubMed ID: 35778838 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy. Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046 [TBL] [Abstract][Full Text] [Related]
12. High-Speed Optical Tweezers for the Study of Single Molecular Motors. Gardini L; Tempestini A; Pavone FS; Capitanio M Methods Mol Biol; 2018; 1805():151-184. PubMed ID: 29971718 [TBL] [Abstract][Full Text] [Related]
13. Using optical tweezers to study the fine details of myosin ATPase mechanochemical cycle. Batters C; Veigel C Methods Mol Biol; 2011; 778():97-109. PubMed ID: 21809202 [TBL] [Abstract][Full Text] [Related]
14. Single-Molecule Optical Tweezers Study of Protein-Membrane Interactions. Ma L; Ge J; Bian X; Zhang Y Methods Mol Biol; 2022; 2473():367-383. PubMed ID: 35819776 [TBL] [Abstract][Full Text] [Related]
15. How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp. Sung J; Mortensen KI; Spudich JA; Flyvbjerg H Methods Enzymol; 2017; 582():1-29. PubMed ID: 28062031 [TBL] [Abstract][Full Text] [Related]
16. Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Capitanio M; Pavone FS Biophys J; 2013 Sep; 105(6):1293-303. PubMed ID: 24047980 [TBL] [Abstract][Full Text] [Related]
17. Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin-1 Motors. Bugiel M; Mitra A; Girardo S; Diez S; Schäffer E Nano Lett; 2018 Feb; 18(2):1290-1295. PubMed ID: 29380607 [TBL] [Abstract][Full Text] [Related]
18. Force generation by kinesin and myosin cytoskeletal motor proteins. Kull FJ; Endow SA J Cell Sci; 2013 Jan; 126(Pt 1):9-19. PubMed ID: 23487037 [TBL] [Abstract][Full Text] [Related]
19. Force-fluorescence spectroscopy at the single-molecule level. Zhou R; Schlierf M; Ha T Methods Enzymol; 2010; 475():405-26. PubMed ID: 20627166 [TBL] [Abstract][Full Text] [Related]
20. Local heat activation of single myosins based on optical trapping of gold nanoparticles. Iwaki M; Iwane AH; Ikezaki K; Yanagida T Nano Lett; 2015 Apr; 15(4):2456-61. PubMed ID: 25736894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]