These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33248429)

  • 1. Predicting driver reaction time and deceleration: Comparison of perception-reaction thresholds and evidence accumulation framework.
    Durrani U; Lee C; Shah D
    Accid Anal Prev; 2021 Jan; 149():105889. PubMed ID: 33248429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using perceptual cues for brake response to a lead vehicle: Comparing threshold and accumulator models of visual looming.
    Xue Q; Markkula G; Yan X; Merat N
    Accid Anal Prev; 2018 Sep; 118():114-124. PubMed ID: 29929099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applying the Accumulator model to predict driver's reaction time based on looming in approaching and braking conditions.
    Durrani U; Lee C
    J Safety Res; 2023 Sep; 86():298-310. PubMed ID: 37718057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A farewell to brake reaction times? Kinematics-dependent brake response in naturalistic rear-end emergencies.
    Markkula G; Engström J; Lodin J; Bärgman J; Victor T
    Accid Anal Prev; 2016 Oct; 95(Pt A):209-26. PubMed ID: 27450793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.
    Scanlon JM; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S182-9. PubMed ID: 26436230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crash probability estimation via quantifying driver hazard perception.
    Li Y; Zheng Y; Wang J; Kodaka K; Li K
    Accid Anal Prev; 2018 Jul; 116():116-125. PubMed ID: 28595973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of effects of driver's evasive action time on rear-end collision risk using a driving simulator.
    Shah D; Lee C
    J Safety Res; 2021 Sep; 78():242-250. PubMed ID: 34399920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of heterogeneity of car-following behavior on rear-end crash risk.
    Zhang J; Wang Y; Lu G
    Accid Anal Prev; 2019 Apr; 125():275-289. PubMed ID: 30802778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing an inverse time-to-collision crash alert timing approach based on drivers' last-second braking and steering judgments.
    Kiefer RJ; LeBlanc DJ; Flannagan CA
    Accid Anal Prev; 2005 Mar; 37(2):295-303. PubMed ID: 15667816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of drivers' deceleration behavior based on naturalistic driving data.
    Li S; Li P; Yao Y; Han X; Xu Y; Chen L
    Traffic Inj Prev; 2020; 21(1):42-47. PubMed ID: 31986072
    [No Abstract]   [Full Text] [Related]  

  • 13. An improved automated braking system for rear-end collisions: A study based on a driving simulator experiment.
    Hang J; Yan X; Li X; Duan K; Yang J; Xue Q
    J Safety Res; 2022 Feb; 80():416-427. PubMed ID: 35249623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of peripheral transverse line markings on drivers' speed and headway choice and crash risk in car-following: A naturalistic observation study.
    Ding N; Zhu S; Jiao N; Liu B
    Accid Anal Prev; 2020 Oct; 146():105701. PubMed ID: 32823033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-depth analysis of drivers' merging behavior and rear-end crash risks in work zone merging areas.
    Weng J; Xue S; Yang Y; Yan X; Qu X
    Accid Anal Prev; 2015 Apr; 77():51-61. PubMed ID: 25687332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of looming and attention capture in drivers' braking responses.
    Terry HR; Charlton SG; Perrone JA
    Accid Anal Prev; 2008 Jul; 40(4):1375-82. PubMed ID: 18606269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does intersection field of view influence driving safety in an emergent situation?
    Yan X; Zhang X; Xue Q
    Accid Anal Prev; 2018 Oct; 119():162-175. PubMed ID: 30036817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A methodology for assessing driver perception-response time during unanticipated cross-centerline events.
    Riexinger LE; Fortenbaugh DM
    Traffic Inj Prev; 2021; 22(sup1):S161-S163. PubMed ID: 34672880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of car driver responses to avoid car-to-cyclist perpendicular collisions based on drive recorder data and driving simulator experiments.
    Zhao Y; Miyahara T; Mizuno K; Ito D; Han Y
    Accid Anal Prev; 2021 Feb; 150():105862. PubMed ID: 33276185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practice makes better - Learning effects of driving with a multi-stage collision warning.
    Winkler S; Kazazi J; Vollrath M
    Accid Anal Prev; 2018 Aug; 117():398-409. PubMed ID: 29477461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.