BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33249227)

  • 1. Thermal treatment at 500 °C significantly reduces the reaction to irregular tricalcium phosphate granules as foreign bodies: An in vivo study.
    Al-Maawi S; Barbeck M; -Vizcaíno CH; Egli R; Sader R; Kirkpatrick CJ; Bohner M; Ghanaati S
    Acta Biomater; 2021 Feb; 121():621-636. PubMed ID: 33249227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and Biological Significance of Formation of Osteoclasts and Foreign Body Giant Cells in an Extraskeletal Implantation Model.
    Ahmed GJ; Tatsukawa E; Morishita K; Shibata Y; Suehiro F; Kamitakahara M; Yokoi T; Koji T; Umeda M; Nishimura M; Ikeda T
    Acta Histochem Cytochem; 2016 Jun; 49(3):97-107. PubMed ID: 27462135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of multinucleated giant cells by microstructures of hydroxyapatite and plasma components in extraskeletal implantation model.
    Morishita K; Tatsukawa E; Shibata Y; Suehiro F; Kamitakahara M; Yokoi T; Ioku K; Umeda M; Nishimura M; Ikeda T
    Acta Biomater; 2016 Jul; 39():180-191. PubMed ID: 27154501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of water glass coating of tricalcium phosphate granules on in vivo bone formation.
    Ryu SM; Ahn MW; Park CH; Lee GW; Song IH; Ahn HS; Kim J; Kim S
    J Biomater Appl; 2018 Nov; 33(5):662-672. PubMed ID: 30396326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the sintering atmosphere on the physico-chemical properties and the osteoclastic resorption of β-tricalcium phosphate cylinders.
    Le Gars Santoni B; Niggli L; Dolder S; Loeffel O; Sblendorio GA; Maazouz Y; Alexander DTL; Heuberger R; Stähli C; Döbelin N; Bowen P; Hofstetter W; Bohner M
    Acta Biomater; 2023 Oct; 169():566-578. PubMed ID: 37595772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of acidic calcium phosphate concentration on setting reaction and tissue response to β-tricalcium phosphate granular cement.
    Fukuda N; Ishikawa K; Akita K; Kamada K; Kurio N; Mori Y; Miyamoto Y
    J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):22-29. PubMed ID: 30884116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo.
    Ghanaati S; Barbeck M; Orth C; Willershausen I; Thimm BW; Hoffmann C; Rasic A; Sader RA; Unger RE; Peters F; Kirkpatrick CJ
    Acta Biomater; 2010 Dec; 6(12):4476-87. PubMed ID: 20624495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of dicalcium phosphate dihydrate-coated β-TCP granules and evaluation of their osteoconductivity using experimental rats.
    Shariff KA; Tsuru K; Ishikawa K
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1411-1419. PubMed ID: 28415432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects.
    Chazono M; Tanaka T; Komaki H; Fujii K
    J Biomed Mater Res A; 2004 Sep; 70(4):542-9. PubMed ID: 15307158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of interconnected porous β-tricalcium phosphate (β-TCP) based on a setting reaction of β-TCP granules with HNO
    Ishikawa K; Putri TS; Tsuchiya A; Tanaka K; Tsuru K
    J Biomed Mater Res A; 2018 Mar; 106(3):797-804. PubMed ID: 29105999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models.
    Chazono M; Tanaka T; Kitasato S; Kikuchi T; Marumo K
    J Orthop Sci; 2008 Nov; 13(6):550-5. PubMed ID: 19089543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of self-setting β-tricalcium phosphate granular cement.
    Fukuda N; Tsuru K; Mori Y; Ishikawa K
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):800-807. PubMed ID: 28370963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined treatment with parathyroid hormone (1-34) and beta-tricalcium phosphate had an additive effect on local bone formation in a rat defect model.
    Tao ZS; Tu KK; Huang ZL; Zhou Q; Sun T; Xu HM; Zhou YL; Lv YX; Cui W; Yang L
    Med Biol Eng Comput; 2016 Sep; 54(9):1353-62. PubMed ID: 26429350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.
    Kunert-Keil C; Scholz F; Gedrange T; Gredes T
    Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration.
    Tripathi G; Sugiura Y; Tsuru K; Ishikawa K
    Biomed Mater; 2018 Aug; 13(6):065002. PubMed ID: 30010092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-acetyl cysteine improves affinity of beta-tricalcium phosphate granules for cultured osteoblast-like cells.
    Yamada M; Minamikawa H; Ueno T; Sakurai K; Ogawa T
    J Biomater Appl; 2012 Jul; 27(1):27-36. PubMed ID: 20876635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of porous alpha-tricalcium phosphate granules with heparin enhanced their early osteogenic capability in a rat calvarial defect model.
    Takeda Y; Honda Y; Kakinoki S; Yamaoka T; Baba S
    Dent Mater J; 2018 Jul; 37(4):575-581. PubMed ID: 29491202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspirin modified strontium-doped β-tricalcium phosphate can accelerate the healing of femoral metaphyseal defects in ovariectomized rats.
    Tao ZS; Zhou WS; Xu HG; Yang M
    Biomed Pharmacother; 2020 Dec; 132():110911. PubMed ID: 33125972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.