These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33249453)

  • 1. FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman-Rafsky non-parametric test.
    Zhang Y; Aevermann BD; Bakken TE; Miller JA; Hodge RD; Lein ES; Scheuermann RH
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33249453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell type matching in single-cell RNA-sequencing data using FR-Match.
    Zhang Y; Aevermann B; Gala R; Scheuermann RH
    Sci Rep; 2022 Jun; 12(1):9996. PubMed ID: 35705694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure.
    Hsiao C; Liu M; Stanton R; McGee M; Qian Y; Scheuermann RH
    Cytometry A; 2016 Jan; 89(1):71-88. PubMed ID: 26274018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CIPR: a web-based R/shiny app and R package to annotate cell clusters in single cell RNA sequencing experiments.
    Ekiz HA; Conley CJ; Stephens WZ; O'Connell RM
    BMC Bioinformatics; 2020 May; 21(1):191. PubMed ID: 32414321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FEATS: feature selection-based clustering of single-cell RNA-seq data.
    Vans E; Patil A; Sharma A
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33285568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters.
    Domanskyi S; Szedlak A; Hawkins NT; Wang J; Paternostro G; Piermarocchi C
    BMC Bioinformatics; 2019 Jul; 20(1):369. PubMed ID: 31262249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scClustViz - Single-cell RNAseq cluster assessment and visualization.
    Innes BT; Bader GD
    F1000Res; 2018; 7():. PubMed ID: 31016009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning.
    Li X; Zhang S; Wong KC
    Bioinformatics; 2019 Aug; 35(16):2809-2817. PubMed ID: 30596898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LRT: Integrative analysis of scRNA-seq and scTCR-seq data to investigate clonal differentiation heterogeneity.
    Xie J; Jeon H; Xin G; Ma Q; Chung D
    PLoS Comput Biol; 2023 Jul; 19(7):e1011300. PubMed ID: 37428794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods and tools for spatial mapping of single-cell RNAseq clusters in Drosophila.
    Mohr SE; Tattikota SG; Xu J; Zirin J; Hu Y; Perrimon N
    Genetics; 2021 Apr; 217(4):. PubMed ID: 33713129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of methods to assign cell type labels to cell clusters from single-cell RNA-sequencing data.
    Diaz-Mejia JJ; Meng EC; Pico AR; MacParland SA; Ketela T; Pugh TJ; Bader GD; Morris JH
    F1000Res; 2019; 8():. PubMed ID: 31508207
    [No Abstract]   [Full Text] [Related]  

  • 14. Evaluating single-cell cluster stability using the Jaccard similarity index.
    Tang M; Kaymaz Y; Logeman BL; Eichhorn S; Liang ZS; Dulac C; Sackton TB
    Bioinformatics; 2021 Aug; 37(15):2212-2214. PubMed ID: 33165513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data.
    Zeng P; Lin Z
    PLoS Comput Biol; 2021 Jun; 17(6):e1009064. PubMed ID: 34077420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ClusterMap: compare multiple single cell RNA-Seq datasets across different experimental conditions.
    Gao X; Hu D; Gogol M; Li H
    Bioinformatics; 2019 Sep; 35(17):3038-3045. PubMed ID: 30649203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering cell types using manifold learning and enhanced visualization of single-cell RNA-Seq data.
    Vasighizaker A; Danda S; Rueda L
    Sci Rep; 2022 Jan; 12(1):120. PubMed ID: 34996927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
    Wang X; Wang J; Zhang H; Huang S; Yin Y
    Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of single-cell RNAseq labelling algorithms using cancer datasets.
    Christensen E; Luo P; Turinsky A; Husić M; Mahalanabis A; Naidas A; Diaz-Mejia JJ; Brudno M; Pugh T; Ramani A; Shooshtari P
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.