These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33249453)

  • 21. scBKAP: A Clustering Model for Single-Cell RNA-Seq Data Based on Bisecting K-Means.
    Wang X; Gao H; Qi R; Zheng R; Gao X; Yu B
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):2007-2015. PubMed ID: 37015596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.
    Lu Y; Yu Z; Wang Y; Ma Z; Wong KC; Li X
    Bioinformatics; 2022 May; 38(11):3020-3028. PubMed ID: 35451457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data.
    Wang Z; Wang H; Zhao J; Zheng C
    BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data.
    Zeng P; Wangwu J; Lin Z
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33279962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of high-throughput single-cell RNA sequencing data processing pipelines.
    Gao M; Ling M; Tang X; Wang S; Xiao X; Qiao Y; Yang W; Yu R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 34020539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contrastive self-supervised clustering of scRNA-seq data.
    Ciortan M; Defrance M
    BMC Bioinformatics; 2021 May; 22(1):280. PubMed ID: 34044773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fast and efficient count-based matrix factorization method for detecting cell types from single-cell RNAseq data.
    Sun S; Chen Y; Liu Y; Shang X
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):28. PubMed ID: 30953530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq.
    Sun X; Lin X; Li Z; Wu H
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35021202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A parameter-free deep embedded clustering method for single-cell RNA-seq data.
    Zeng Y; Wei Z; Zhong F; Pan Z; Lu Y; Yang Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections.
    Bian C; Wang X; Su Y; Wang Y; Wong KC; Li X
    Comput Struct Biotechnol J; 2022; 20():2181-2197. PubMed ID: 35615016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving Single-Cell RNA-seq Clustering by Integrating Pathways.
    Zhang C; Gao L; Wang B; Gao Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33940590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools.
    Germain PL; Sonrel A; Robinson MD
    Genome Biol; 2020 Sep; 21(1):227. PubMed ID: 32873325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. M3Drop: dropout-based feature selection for scRNASeq.
    Andrews TS; Hemberg M
    Bioinformatics; 2019 Aug; 35(16):2865-2867. PubMed ID: 30590489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data.
    Mongia A; Sengupta D; Majumdar A
    Front Genet; 2019; 10():9. PubMed ID: 30761179
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.