These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 33249604)
1. A shift in abscisic acid/gibberellin balance underlies retention of dormancy induced by seed development temperature. Tuan PA; Nguyen TN; Jordan MC; Ayele BT Plant Cell Environ; 2021 Jul; 44(7):2230-2244. PubMed ID: 33249604 [TBL] [Abstract][Full Text] [Related]
2. Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signalling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.). Izydorczyk C; Nguyen TN; Jo S; Son S; Tuan PA; Ayele BT Plant Cell Environ; 2018 May; 41(5):1022-1037. PubMed ID: 28349595 [TBL] [Abstract][Full Text] [Related]
3. Highly Sprouting-Tolerant Wheat Grain Exhibits Extreme Dormancy and Cold Imbibition-Resistant Accumulation of Abscisic Acid. Kashiwakura Y; Kobayashi D; Jikumaru Y; Takebayashi Y; Nambara E; Seo M; Kamiya Y; Kushiro T; Kawakami N Plant Cell Physiol; 2016 Apr; 57(4):715-32. PubMed ID: 26971301 [TBL] [Abstract][Full Text] [Related]
4. Jasmonate regulates seed dormancy in wheat via modulating the balance between gibberellin and abscisic acid. Nguyen TN; Tuan PA; Ayele BT J Exp Bot; 2022 Apr; 73(8):2434-2453. PubMed ID: 35104307 [TBL] [Abstract][Full Text] [Related]
5. Identification of genes involved in metabolism and signalling of abscisic acid and gibberellins during Epimedium pseudowushanense B.L.Guo seed morphophysiological dormancy. Ma Y; Chen X; Guo B Plant Cell Rep; 2018 Jul; 37(7):1061-1075. PubMed ID: 29796945 [TBL] [Abstract][Full Text] [Related]
6. Modulation in the ratio of abscisic acid to gibberellin level determines genetic variation of seed dormancy in barley (Hordeum vulgare L.). Toora PK; Tuan PA; Nguyen TN; Badea A; Ayele BT J Plant Physiol; 2024 Oct; 301():154301. PubMed ID: 38968782 [TBL] [Abstract][Full Text] [Related]
7. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. Liu A; Gao F; Kanno Y; Jordan MC; Kamiya Y; Seo M; Ayele BT PLoS One; 2013; 8(2):e56570. PubMed ID: 23437172 [TBL] [Abstract][Full Text] [Related]
8. Ethylene regulates post-germination seedling growth in wheat through spatial and temporal modulation of ABA/GA balance. Sun M; Tuan PA; Izydorczyk MS; Ayele BT J Exp Bot; 2020 Mar; 71(6):1985-2004. PubMed ID: 31872216 [TBL] [Abstract][Full Text] [Related]
9. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars. Liu Y; Fang J; Xu F; Chu J; Yan C; Schläppi MR; Wang Y; Chu C J Genet Genomics; 2014 Jun; 41(6):327-38. PubMed ID: 24976122 [TBL] [Abstract][Full Text] [Related]
10. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. Chen H; Ruan J; Chu P; Fu W; Liang Z; Li Y; Tong J; Xiao L; Liu J; Li C; Huang S Plant J; 2020 Jan; 101(2):310-323. PubMed ID: 31536657 [TBL] [Abstract][Full Text] [Related]
11. Genetic variation of seed dormancy in wheat (Triticum aestivum L.) is mediated by transcriptional regulation of abscisic acid metabolism and signaling. Rehal PK; Tuan PA; Nguyen TN; Cattani DJ; Humphreys DG; Ayele BT Plant Sci; 2022 Nov; 324():111432. PubMed ID: 36029895 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of FUSCA3 degradation at high temperature is dependent on ABA signaling and is regulated by the ABA/GA ratio. Chiu RS; Saleh Y; Gazzarrini S Plant Signal Behav; 2016 Nov; 11(11):e1247137. PubMed ID: 27791466 [TBL] [Abstract][Full Text] [Related]
13. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice. Du W; Cheng J; Cheng Y; Wang L; He Y; Wang Z; Zhang H Plant Biol (Stuttg); 2015 Nov; 17(6):1156-64. PubMed ID: 26205956 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid. An YQ; Lin L BMC Plant Biol; 2011 Jun; 11():105. PubMed ID: 21668981 [TBL] [Abstract][Full Text] [Related]
15. Molecular Aspects of Seed Development Controlled by Gibberellins and Abscisic Acids. Kozaki A; Aoyanagi T Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163798 [TBL] [Abstract][Full Text] [Related]
16. phyB and HY5 are Involved in the Blue Light-Mediated Alleviation of Dormancy of Stawska M; Oracz K Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771191 [TBL] [Abstract][Full Text] [Related]
17. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Seo M; Hanada A; Kuwahara A; Endo A; Okamoto M; Yamauchi Y; North H; Marion-Poll A; Sun TP; Koshiba T; Kamiya Y; Yamaguchi S; Nambara E Plant J; 2006 Nov; 48(3):354-66. PubMed ID: 17010113 [TBL] [Abstract][Full Text] [Related]
18. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in arabidopsis. Shu K; Zhang H; Wang S; Chen M; Wu Y; Tang S; Liu C; Feng Y; Cao X; Xie Q PLoS Genet; 2013 Jun; 9(6):e1003577. PubMed ID: 23818868 [TBL] [Abstract][Full Text] [Related]
19. Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. Yue C; Cao H; Hao X; Zeng J; Qian W; Guo Y; Ye N; Yang Y; Wang X Plant Cell Rep; 2018 Mar; 37(3):425-441. PubMed ID: 29214380 [TBL] [Abstract][Full Text] [Related]
20. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Argyris J; Dahal P; Hayashi E; Still DW; Bradford KJ Plant Physiol; 2008 Oct; 148(2):926-47. PubMed ID: 18753282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]