These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33249652)

  • 1. Perturbing the energy landscape for improved packing during computational protein design.
    Maguire JB; Haddox HK; Strickland D; Halabiya SF; Coventry B; Griffin JR; Pulavarti SVSRK; Cummins M; Thieker DF; Klavins E; Szyperski T; DiMaio F; Baker D; Kuhlman B
    Proteins; 2021 Apr; 89(4):436-449. PubMed ID: 33249652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving computational protein design by using structure-derived sequence profile.
    Dai L; Yang Y; Kim HR; Zhou Y
    Proteins; 2010 Aug; 78(10):2338-48. PubMed ID: 20544969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
    Koga R; Yamamoto M; Kosugi T; Kobayashi N; Sugiki T; Fujiwara T; Koga N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31149-31156. PubMed ID: 33229587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing protein structures and complexes with the molecular modeling program Rosetta.
    Kuhlman B
    J Biol Chem; 2019 Dec; 294(50):19436-19443. PubMed ID: 31699898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein sequence design by conformational landscape optimization.
    Norn C; Wicky BIM; Juergens D; Liu S; Kim D; Tischer D; Koepnick B; Anishchenko I; ; Baker D; Ovchinnikov S
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33712545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global analysis of protein folding using massively parallel design, synthesis, and testing.
    Rocklin GJ; Chidyausiku TM; Goreshnik I; Ford A; Houliston S; Lemak A; Carter L; Ravichandran R; Mulligan VK; Chevalier A; Arrowsmith CH; Baker D
    Science; 2017 Jul; 357(6347):168-175. PubMed ID: 28706065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach.
    Romero-Romero S; Costas M; Silva Manzano DA; Kordes S; Rojas-Ortega E; Tapia C; Guerra Y; Shanmugaratnam S; Rodríguez-Romero A; Baker D; Höcker B; Fernández-Velasco DA
    J Mol Biol; 2021 Sep; 433(18):167153. PubMed ID: 34271011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational protein design with explicit consideration of surface hydrophobic patches.
    Jacak R; Leaver-Fay A; Kuhlman B
    Proteins; 2012 Mar; 80(3):825-38. PubMed ID: 22223219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo protein design. I. In search of stability and specificity.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1161-81. PubMed ID: 10547293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational assessment of folding energy landscapes in heterodimeric coiled coils.
    André I; Bjelic S
    Proteins; 2018 Jul; 86(7):790-801. PubMed ID: 29675909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational protein design: a novel path to future protein drugs.
    Rosenberg M; Goldblum A
    Curr Pharm Des; 2006; 12(31):3973-97. PubMed ID: 17100608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet.
    Suárez-Diez M; Pujol AM; Matzapetakis M; Jaramillo A; Iranzo O
    Biotechnol J; 2013 Jul; 8(7):855-64. PubMed ID: 23788466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of amino acids involved in protein structural uniqueness: implication for de novo protein design.
    Isogai Y; Ota M; Ishii A; Ishida M; Nishikawa K
    Protein Eng; 2002 Jul; 15(7):555-60. PubMed ID: 12200537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Evolution-Based Approach to De Novo Protein Design.
    Brender JR; Shultis D; Khattak NA; Zhang Y
    Methods Mol Biol; 2017; 1529():243-264. PubMed ID: 27914055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling disordered regions in proteins using Rosetta.
    Wang RY; Han Y; Krassovsky K; Sheffler W; Tyka M; Baker D
    PLoS One; 2011; 6(7):e22060. PubMed ID: 21829444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iterated local search with partition crossover for computational protein design.
    Beuvin F; de Givry S; Schiex T; Verel S; Simoncini D
    Proteins; 2021 Nov; 89(11):1522-1529. PubMed ID: 34228826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coarse-grained approach to protein design: learning from design to understand folding.
    Coluzza I
    PLoS One; 2011; 6(7):e20853. PubMed ID: 21747930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure prediction for CASP8 with all-atom refinement using Rosetta.
    Raman S; Vernon R; Thompson J; Tyka M; Sadreyev R; Pei J; Kim D; Kellogg E; DiMaio F; Lange O; Kinch L; Sheffler W; Kim BH; Das R; Grishin NV; Baker D
    Proteins; 2009; 77 Suppl 9(0 9):89-99. PubMed ID: 19701941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.