BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 33249995)

  • 1. Cell-Extracellular Matrix Interactions Play Multiple Essential Roles in Aortic Arch Development.
    Warkala M; Chen D; Ramirez A; Jubran A; Schonning M; Wang X; Zhao H; Astrof S
    Circ Res; 2021 Feb; 128(3):e27-e44. PubMed ID: 33249995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner.
    Chen D; Wang X; Liang D; Gordon J; Mittal A; Manley N; Degenhardt K; Astrof S
    Dev Biol; 2015 Nov; 407(2):195-210. PubMed ID: 26434918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buffering Mechanism in Aortic Arch Artery Formation and Congenital Heart Disease.
    Ramirez A; Vyzas CA; Zhao H; Eng K; Degenhardt K; Astrof S
    Circ Res; 2024 May; 134(10):e112-e132. PubMed ID: 38618720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural crest cell-autonomous roles of fibronectin in cardiovascular development.
    Wang X; Astrof S
    Development; 2016 Jan; 143(1):88-100. PubMed ID: 26552887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharyngeal arch artery defects and lethal malformations of the aortic arch and its branches in mice deficient for the Hrt1/Hey1 transcription factor.
    Fujita M; Sakabe M; Ioka T; Watanabe Y; Kinugasa-Katayama Y; Tsuchihashi T; Utset MF; Yamagishi H; Nakagawa O
    Mech Dev; 2016 Feb; 139():65-73. PubMed ID: 26577899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel buffering mechanisms in aortic arch artery development and congenital heart disease.
    Ramirez A; Vyzas CA; Zhao H; Eng K; Degenhardt K; Astrof S
    bioRxiv; 2024 Feb; ():. PubMed ID: 38370627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field.
    Wang X; Chen D; Chen K; Jubran A; Ramirez A; Astrof S
    Dev Biol; 2017 Jan; 421(2):108-117. PubMed ID: 27955943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis.
    Liang D; Wang X; Mittal A; Dhiman S; Hou SY; Degenhardt K; Astrof S
    Dev Biol; 2014 Nov; 395(2):232-44. PubMed ID: 25242040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An essential requirement for β1 integrin in the assembly of extracellular matrix proteins within the vascular wall.
    Turlo KA; Noel OD; Vora R; LaRussa M; Fassler R; Hall-Glenn F; Iruela-Arispe ML
    Dev Biol; 2012 May; 365(1):23-35. PubMed ID: 22331032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ece1 and Tbx1 define distinct pathways to aortic arch morphogenesis.
    Morishima M; Yanagisawa H; Yanagisawa M; Baldini A
    Dev Dyn; 2003 Sep; 228(1):95-104. PubMed ID: 12950083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of endothelial Hey1 expression for thoracic great vessel development and its distal enhancer for Notch-dependent endothelial transcription.
    Watanabe Y; Seya D; Ihara D; Ishii S; Uemoto T; Kubo A; Arai Y; Isomoto Y; Nakano A; Abe T; Shigeta M; Kawamura T; Saito Y; Ogura T; Nakagawa O
    J Biol Chem; 2020 Dec; 295(51):17632-17645. PubMed ID: 33454003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delta-like ligand-4 regulates Notch-mediated maturation of second heart field progenitor-derived pharyngeal arterial endothelial cells.
    De Zoysa P; Toubat O; Harvey DC; Yi C; Liu J; Cavallero S; Hong YK; Sucov HM; Kumar SR
    J Cell Mol Med; 2022 Oct; 26(20):5181-5194. PubMed ID: 36082581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SMAD4: A critical regulator of cardiac neural crest cell fate and vascular smooth muscle development.
    Alexander BE; Zhao H; Astrof S
    Dev Dyn; 2024 Jan; 253(1):119-143. PubMed ID: 37650555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jun is required in Isl1-expressing progenitor cells for cardiovascular development.
    Zhang T; Liu J; Zhang J; Thekkethottiyil EB; Macatee TL; Ismat FA; Wang F; Stoller JZ
    PLoS One; 2013; 8(2):e57032. PubMed ID: 23437302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharyngeal pouches provide a niche microenvironment for arch artery progenitor specification.
    Mao A; Zhang M; Li L; Liu J; Ning G; Cao Y; Wang Q
    Development; 2021 Jan; 148(2):. PubMed ID: 33334861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibronectin and integrin alpha 5 play requisite roles in cardiac morphogenesis.
    Mittal A; Pulina M; Hou SY; Astrof S
    Dev Biol; 2013 Sep; 381(1):73-82. PubMed ID: 23791818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tbx1 genetically interacts with the transforming growth factor-β/bone morphogenetic protein inhibitor Smad7 during great vessel remodeling.
    Papangeli I; Scambler PJ
    Circ Res; 2013 Jan; 112(1):90-102. PubMed ID: 23011393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ubiquitin ligase HECTD1 promotes retinoic acid signaling required for development of the aortic arch.
    Sugrue KF; Sarkar AA; Leatherbury L; Zohn IE
    Dis Model Mech; 2019 Jan; 12(1):. PubMed ID: 30578278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CXCL12-CXCR4 signalling plays an essential role in proper patterning of aortic arch and pulmonary arteries.
    Kim BG; Kim YH; Stanley EL; Garrido-Martin EM; Lee YJ; Oh SP
    Cardiovasc Res; 2017 Nov; 113(13):1677-1687. PubMed ID: 29016745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hoxa1 and Hoxb1 are required for pharyngeal arch artery development.
    Roux M; Laforest B; Eudes N; Bertrand N; Stefanovic S; Zaffran S
    Mech Dev; 2017 Feb; 143():1-8. PubMed ID: 27956219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.