These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 33250245)
1. Potassium phosphate/magnesium oxide modified biochars: Interfacial chemical behaviours and Pb binding performance. Miao Q; Li G Sci Total Environ; 2021 Mar; 759():143452. PubMed ID: 33250245 [TBL] [Abstract][Full Text] [Related]
2. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. Gao R; Fu Q; Hu H; Wang Q; Liu Y; Zhu J J Hazard Mater; 2019 Jun; 371():191-197. PubMed ID: 30851672 [TBL] [Abstract][Full Text] [Related]
3. Remediation of Pb(II) and Cd(II) in polluted waters with calcium thioglycolate-modified straw biochar. Li S; Luo C; Yan F; Yang Y; Guo B; Wang L; Xu S; Wu F; Ji P Environ Pollut; 2023 Dec; 338():122638. PubMed ID: 37775026 [TBL] [Abstract][Full Text] [Related]
4. Nano-hydroxyapatite modified biochar: Insights into the dynamic adsorption and performance of lead (II) removal from aqueous solution. Ahmed W; Xu T; Mahmood M; Núñez-Delgado A; Ali S; Shakoor A; Qaswar M; Zhao H; Liu W; Li W; Mehmood S Environ Res; 2022 Nov; 214(Pt 2):113827. PubMed ID: 35863445 [TBL] [Abstract][Full Text] [Related]
5. Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb Shi Q; Zhang H; Shahab A; Zeng H; Zeng H; Bacha AU; Nabi I; Siddique J; Ullah H Ecotoxicol Environ Saf; 2021 Sep; 221():112426. PubMed ID: 34166940 [TBL] [Abstract][Full Text] [Related]
6. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Usman AR; Ahmad M; El-Mahrouky M; Al-Omran A; Ok YS; Sallam ASh; El-Naggar AH; Al-Wabel MI Environ Geochem Health; 2016 Apr; 38(2):511-21. PubMed ID: 26100325 [TBL] [Abstract][Full Text] [Related]
7. Preparation of nitrogen doped magnesium oxide modified biochar and its sorption efficiency of lead ions in aqueous solution. Shang H; Li Y; Liu J; Wan Y; Feng Y; Yu Y Bioresour Technol; 2020 Oct; 314():123708. PubMed ID: 32599530 [TBL] [Abstract][Full Text] [Related]
8. [Adsorption Characteristics of Pb(Ⅱ) on Eucalyptus Biochar Modified by Potassium Permanganate]. Mo ZL; Zeng HH; Lin H; Asfandyar S; Shi QL; Zhang H Huan Jing Ke Xue; 2021 Nov; 42(11):5440-5449. PubMed ID: 34708983 [TBL] [Abstract][Full Text] [Related]
9. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Wu W; Li J; Niazi NK; Müller K; Chu Y; Zhang L; Yuan G; Lu K; Song Z; Wang H Environ Sci Pollut Res Int; 2016 Nov; 23(22):22890-22896. PubMed ID: 27572693 [TBL] [Abstract][Full Text] [Related]
10. Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds. Ahmed W; Mehmood S; Núñez-Delgado A; Ali S; Qaswar M; Shakoor A; Mahmood M; Chen DY Sci Total Environ; 2021 Aug; 784():147136. PubMed ID: 33892324 [TBL] [Abstract][Full Text] [Related]
11. Enhanced adsorption of Pb(II) by nitrogen and phosphorus co-doped biochar derived from Camellia oleifera shells. Fan Y; Wang H; Deng L; Wang Y; Kang D; Li C; Chen H Environ Res; 2020 Dec; 191():110030. PubMed ID: 32827523 [TBL] [Abstract][Full Text] [Related]
12. Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal. Ajmal Z; Muhmood A; Dong R; Wu S J Environ Manage; 2020 Jan; 253():109730. PubMed ID: 31665689 [TBL] [Abstract][Full Text] [Related]
13. Crayfish shell biochar modified with magnesium chloride and its effect on lead removal in aqueous solution. Zhang J; Hu X; Yan J; Long L; Xue Y Environ Sci Pollut Res Int; 2020 Mar; 27(9):9582-9588. PubMed ID: 31916176 [TBL] [Abstract][Full Text] [Related]
14. Adsorption Characteristics and Mechanisms of Fe-Mn Oxide Modified Biochar for Pb(II) in Wastewater. Tang SF; Zhou H; Tan WT; Huang JG; Zeng P; Gu JF; Liao BH Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886272 [TBL] [Abstract][Full Text] [Related]
15. Co-pyrolysis of biomass and phosphate tailing to produce potential phosphorus-rich biochar: efficient removal of heavy metals and the underlying mechanisms. Yang F; Lv J; Zhou Y; Wu S; Sima J Environ Sci Pollut Res Int; 2023 Feb; 30(7):17804-17816. PubMed ID: 36203042 [TBL] [Abstract][Full Text] [Related]
16. Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Liu L; Huang Y; Zhang S; Gong Y; Su Y; Cao J; Hu H Waste Manag; 2019 Dec; 100():287-295. PubMed ID: 31568977 [TBL] [Abstract][Full Text] [Related]
17. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Ding W; Dong X; Ime IM; Gao B; Ma LQ Chemosphere; 2014 Jun; 105():68-74. PubMed ID: 24393563 [TBL] [Abstract][Full Text] [Related]
18. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata. Cui X; Dai X; Khan KY; Li T; Yang X; He Z Bioresour Technol; 2016 Oct; 218():1123-32. PubMed ID: 27469093 [TBL] [Abstract][Full Text] [Related]
19. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution. Tan Y; Wan X; Zhou T; Wang L; Yin X; Ma A; Wang N J Hazard Mater; 2022 Feb; 424(Pt A):127349. PubMed ID: 34879556 [TBL] [Abstract][Full Text] [Related]
20. Phosphate Removal Mechanisms in Aqueous Solutions by Three Different Fe-Modified Biochars. Qin Y; Wu X; Huang Q; Beiyuan J; Wang J; Liu J; Yuan W; Nie C; Wang H Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]