These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33250280)

  • 1. A Machine Learning decision-making tool for extubation in Intensive Care Unit patients.
    Fabregat A; Magret M; Ferré JA; Vernet A; Guasch N; Rodríguez A; Gómez J; Bodí M
    Comput Methods Programs Biomed; 2021 Mar; 200():105869. PubMed ID: 33250280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning for Prediction of Successful Extubation of Mechanical Ventilated Patients in an Intensive Care Unit: A Retrospective Observational Study.
    Otaguro T; Tanaka H; Igarashi Y; Tagami T; Masuno T; Yokobori S; Matsumoto H; Ohwada H; Yokota H
    J Nippon Med Sch; 2021 Nov; 88(5):408-417. PubMed ID: 33692291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of extubation failure in the paediatric cardiac ICU using machine learning and high-frequency physiologic data.
    Rooney SR; Reynolds EL; Banerjee M; Pasquali SK; Charpie JR; Gaies MG; Owens GE
    Cardiol Young; 2022 Oct; 32(10):1649-1656. PubMed ID: 34924086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integrative Index for Predicting Extubation Outcomes After Successful Completion of a Spontaneous Breathing Trial in an Adult Medical Intensive Care Unit.
    Wu TJ; Shiao JS; Yu HL; Lai RS
    J Intensive Care Med; 2019 Aug; 34(8):640-645. PubMed ID: 28443390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early prediction of noninvasive ventilation failure after extubation: development and validation of a machine-learning model.
    Wang H; Zhao QY; Luo JC; Liu K; Yu SJ; Ma JF; Luo MH; Hao GW; Su Y; Zhang YJ; Tu GW; Luo Z
    BMC Pulm Med; 2022 Aug; 22(1):304. PubMed ID: 35941641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Protocolized Weaning With Early Extubation to Noninvasive Ventilation vs Invasive Weaning on Time to Liberation From Mechanical Ventilation Among Patients With Respiratory Failure: The Breathe Randomized Clinical Trial.
    Perkins GD; Mistry D; Gates S; Gao F; Snelson C; Hart N; Camporota L; Varley J; Carle C; Paramasivam E; Hoddell B; McAuley DF; Walsh TS; Blackwood B; Rose L; Lamb SE; Petrou S; Young D; Lall R;
    JAMA; 2018 Nov; 320(18):1881-1888. PubMed ID: 30347090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of a spontaneous breathing trial for extubation of neonates.
    Fiatt M; Bosio AC; Neves D; Symanski da Cunha R; Fonseca LT; Celeste RK
    J Neonatal Perinatal Med; 2021; 14(3):375-382. PubMed ID: 33337394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk factors for extubation failure in the intensive care unit.
    Silva-Cruz AL; Velarde-Jacay K; Carreazo NY; Escalante-Kanashiro R
    Rev Bras Ter Intensiva; 2018; 30(3):294-300. PubMed ID: 30304083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of implementing
    Sarti AJ; Zheng K; Herry CL; Sutherland S; Scales NB; Watpool I; Porteous R; Hickey M; Anstee C; Fazekas A; Ramsay T; Burns KE; Seely AJ;
    BMJ Open; 2021 Aug; 11(8):e045674. PubMed ID: 34385234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research advances in validity of predictors for extubation outcome in children receiving invasive mechanical ventilation].
    Zhang Z; Xue Y; Li HH; Li YM
    Zhongguo Dang Dai Er Ke Za Zhi; 2019 Jul; 21(7):730-734. PubMed ID: 31315777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A decision-tree model for predicting extubation outcome in elderly patients after a successful spontaneous breathing trial.
    Liu Y; Wei LQ; Li GQ; Lv FY; Wang H; Zhang YH; Cao WL
    Anesth Analg; 2010 Nov; 111(5):1211-8. PubMed ID: 20841406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocolised non-invasive compared with invasive weaning from mechanical ventilation for adults in intensive care: the Breathe RCT.
    Perkins GD; Mistry D; Lall R; Gao-Smith F; Snelson C; Hart N; Camporota L; Varley J; Carle C; Paramasivam E; Hoddell B; de Paeztron A; Dosanjh S; Sampson J; Blair L; Couper K; McAuley D; Young JD; Walsh T; Blackwood B; Rose L; Lamb SE; Dritsaki M; Maredza M; Khan I; Petrou S; Gates S
    Health Technol Assess; 2019 Sep; 23(48):1-114. PubMed ID: 31532358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan.
    Pai KC; Su SA; Chan MC; Wu CL; Chao WC
    BMC Anesthesiol; 2022 Nov; 22(1):351. PubMed ID: 36376785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association Between Overnight Extubations and Outcomes in the Intensive Care Unit.
    Gershengorn HB; Scales DC; Kramer A; Wunsch H
    JAMA Intern Med; 2016 Nov; 176(11):1651-1660. PubMed ID: 27598515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study.
    Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC
    J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons of predictive performance of breathing pattern variability measured during T-piece, automatic tube compensation, and pressure support ventilation for weaning intensive care unit patients from mechanical ventilation.
    Bien MY; Shui Lin Y; Shih CH; Yang YL; Lin HW; Bai KJ; Wang JH; Ru Kou Y
    Crit Care Med; 2011 Oct; 39(10):2253-62. PubMed ID: 21666447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive breathing variability indices enhance the prediction of extubation failure in patients on mechanical ventilation.
    Pan Q; Zhang H; Jiang M; Ning G; Fang L; Ge H
    Comput Biol Med; 2023 Feb; 153():106459. PubMed ID: 36603435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventilator weaning and extubation practices in critically ill children: An Australian and New Zealand survey of practice.
    Schults JA; Charles K; Harnischfeger J; Erikson S; Burren J; Waak M; Blackwood B; Tume LN; Long D;
    Aust Crit Care; 2023 Jul; 36(4):509-514. PubMed ID: 36038459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conventional weaning parameters do not predict extubation outcome in intubated subjects requiring prolonged mechanical ventilation.
    Huang CT; Yu CJ
    Respir Care; 2013 Aug; 58(8):1307-14. PubMed ID: 23307826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconnection to mechanical ventilation for 1 h after a successful spontaneous breathing trial reduces reintubation in critically ill patients: a multicenter randomized controlled trial.
    Fernandez MM; González-Castro A; Magret M; Bouza MT; Ibañez M; García C; Balerdi B; Mas A; Arauzo V; Añón JM; Ruiz F; Ferreres J; Tomás R; Alabert M; Tizón AI; Altaba S; Llamas N; Fernandez R
    Intensive Care Med; 2017 Nov; 43(11):1660-1667. PubMed ID: 28936675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.