BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 33250281)

  • 1. ARmedViewer, an augmented-reality-based fast 3D reslicer for medical image data on mobile devices: A feasibility study.
    Sveinsson B; Koonjoo N; Rosen MS
    Comput Methods Programs Biomed; 2021 Mar; 200():105836. PubMed ID: 33250281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Data Visualization with Augmented Reality (AR) on Mobile Devices.
    Yiu CB; Chen YW
    Methods Mol Biol; 2021; 2199():347-356. PubMed ID: 33125660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and evaluation of a prototype of augmented reality applied to medical devices.
    Escalada-Hernández P; Soto Ruiz N; San Martín-Rodríguez L
    Int J Med Inform; 2019 Aug; 128():87-92. PubMed ID: 31126843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobile educational tool based on augmented reality technology for tooth carving: results of a prospective cohort study.
    Lim EJ; Kim YS; Im JE; Lee JG
    BMC Med Educ; 2023 Jun; 23(1):462. PubMed ID: 37344879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informatics in radiology: Intuitive user interface for 3D image manipulation using augmented reality and a smartphone as a remote control.
    Nakata N; Suzuki N; Hattori A; Hirai N; Miyamoto Y; Fukuda K
    Radiographics; 2012; 32(4):E169-74. PubMed ID: 22556316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Personalized augmented reality for anatomy education.
    Ma M; Fallavollita P; Seelbach I; Von Der Heide AM; Euler E; Waschke J; Navab N
    Clin Anat; 2016 May; 29(4):446-53. PubMed ID: 26646315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An augmented reality tool for learning spatial anatomy on mobile devices.
    Jain N; Youngblood P; Hasel M; Srivastava S
    Clin Anat; 2017 Sep; 30(6):736-741. PubMed ID: 28631297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JAtlasView: a Java atlas-viewer for browsing biomedical 3D images and atlases.
    Feng G; Burton N; Hill B; Davidson D; Kerwin J; Scott M; Lindsay S; Baldock R
    BMC Bioinformatics; 2005 Mar; 6():47. PubMed ID: 15757508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Real-Time Volume Rendering of Functional Magnetic Resonance Imaging on an iOS Device.
    Holub J; Winer E
    J Digit Imaging; 2017 Dec; 30(6):738-750. PubMed ID: 28585063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of conserved structures by fusing highly variable datasets.
    Silverstein JC; Chhadia A; Dech F
    Stud Health Technol Inform; 2002; 85():494-500. PubMed ID: 15458139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Evaluation of augmented reality technology in the recognizing of oral and maxillofacial anatomy].
    Tang Z; Hu L; Chen Z; Yu Y; Zhang W; Peng X
    Beijing Da Xue Xue Bao Yi Xue Ban; 2024 Jun; 56(3):541-545. PubMed ID: 38864142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Feasibility Study for the Development of an Application for Simulated Virtual Reality Radiation Therapy Experiences Using Android and iOS Devices].
    Hariu M; Hatanaka S; Kondo S; Shimbo M; Saito M; Goto S; Soda R; Yamano T; Nishimura K; Takahashi T
    Igaku Butsuri; 2020; 40(4):119-125. PubMed ID: 33390377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing a brain-computer interface to facilitate intraoperative medical imaging control - a feasibility study.
    Esfandiari H; Troxler P; Hodel S; Suter D; Farshad M; ; Fürnstahl P
    BMC Musculoskelet Disord; 2022 Jul; 23(1):701. PubMed ID: 35869451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the 3D Augmented Reality-Guided Intraoperative Positioning of Dental Implants in Edentulous Mandibular Models.
    Jiang W; Ma L; Zhang B; Fan Y; Qu X; Zhang X; Liao H
    Int J Oral Maxillofac Implants; 2018; 33(6):1219-1228. PubMed ID: 30427952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D visualization and stereographic techniques for medical research and education.
    Rydmark M; Kling-Petersen T; Pascher R; Philip F
    Stud Health Technol Inform; 2001; 81():434-9. PubMed ID: 11317785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dex-ray: augmented reality neurosurgical navigation with a handheld video probe.
    Kockro RA; Tsai YT; Ng I; Hwang P; Zhu C; Agusanto K; Hong LX; Serra L
    Neurosurgery; 2009 Oct; 65(4):795-807; discussion 807-8. PubMed ID: 19834386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console.
    Volonté F; Buchs NC; Pugin F; Spaltenstein J; Schiltz B; Jung M; Hagen M; Ratib O; Morel P
    Int J Med Robot; 2013 Sep; 9(3):e34-8. PubMed ID: 23239589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MARIN: an open-source mobile augmented reality interactive neuronavigation system.
    Léger É; Reyes J; Drouin S; Popa T; Hall JA; Collins DL; Kersten-Oertel M
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):1013-1021. PubMed ID: 32323206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NIRViz: 3D visualization software for multimodality optical imaging using visualization toolkit (VTK) and insight segmentation toolkit (ITK).
    Taka SJ; Srinivasan S
    J Digit Imaging; 2011 Dec; 24(6):1103-11. PubMed ID: 21274590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WormGUIDES: an interactive single cell developmental atlas and tool for collaborative multidimensional data exploration.
    Santella A; Catena R; Kovacevic I; Shah P; Yu Z; Marquina-Solis J; Kumar A; Wu Y; Schaff J; Colón-Ramos D; Shroff H; Mohler WA; Bao Z
    BMC Bioinformatics; 2015 Jun; 16(1):189. PubMed ID: 26051157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.