These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 33250709)
1. Origin of the Time Lag Phenomenon and the Global Signal in Resting-State fMRI. Amemiya S; Takao H; Abe O Front Neurosci; 2020; 14():596084. PubMed ID: 33250709 [TBL] [Abstract][Full Text] [Related]
2. Cerebral Autoregulation Evidenced by Synchronized Low Frequency Oscillations in Blood Pressure and Resting-State fMRI. Whittaker JR; Driver ID; Venzi M; Bright MG; Murphy K Front Neurosci; 2019; 13():433. PubMed ID: 31133780 [TBL] [Abstract][Full Text] [Related]
3. A Resilient, Non-neuronal Source of the Spatiotemporal Lag Structure Detected by BOLD Signal-Based Blood Flow Tracking. Aso T; Jiang G; Urayama SI; Fukuyama H Front Neurosci; 2017; 11():256. PubMed ID: 28553198 [TBL] [Abstract][Full Text] [Related]
4. Global and structured waves of rs-fMRI signal identified as putative propagation of spontaneous neural activity. Amemiya S; Takao H; Hanaoka S; Ohtomo K Neuroimage; 2016 Jun; 133():331-340. PubMed ID: 27012499 [TBL] [Abstract][Full Text] [Related]
5. Estimating and mitigating the effects of systemic low frequency oscillations (sLFO) on resting state networks in awake non-human primates using time lag dependent methodology. Cao L; Kohut SJ; Frederick BD Front Neuroimaging; 2022; 1():1031991. PubMed ID: 37555145 [TBL] [Abstract][Full Text] [Related]
6. Axial variation of deoxyhemoglobin density as a source of the low-frequency time lag structure in blood oxygenation level-dependent signals. Aso T; Urayama S; Fukuyama H; Murai T PLoS One; 2019; 14(9):e0222787. PubMed ID: 31545839 [TBL] [Abstract][Full Text] [Related]
7. Stronger influence of systemic than local hemodynamic-vascular factors on resting-state BOLD functional connectivity. Schneider SC; Kaczmarz S; Göttler J; Kufer J; Zott B; Priller J; Kallmayer M; Zimmer C; Sorg C; Preibisch C Neuroimage; 2023 Nov; 281():120380. PubMed ID: 37741595 [TBL] [Abstract][Full Text] [Related]
9. The effects of capillary transit time heterogeneity on the BOLD signal. Angleys H; Jespersen SN; Østergaard L Hum Brain Mapp; 2018 Jun; 39(6):2329-2352. PubMed ID: 29498762 [TBL] [Abstract][Full Text] [Related]
10. The Relationship Between Local Field Potentials and the Blood-Oxygenation-Level Dependent MRI Signal Can Be Non-linear. Zhang X; Pan WJ; Keilholz S Front Neurosci; 2019; 13():1126. PubMed ID: 31708727 [TBL] [Abstract][Full Text] [Related]
11. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal. Wen H; Liu Z J Neurosci; 2016 Jun; 36(22):6030-40. PubMed ID: 27251624 [TBL] [Abstract][Full Text] [Related]
12. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons. Ma Y; Shaik MA; Kozberg MG; Kim SH; Portes JP; Timerman D; Hillman EM Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8463-E8471. PubMed ID: 27974609 [TBL] [Abstract][Full Text] [Related]
13. Phase-synchronization-based parcellation of resting state fMRI signals reveals topographically organized clusters in early visual cortex. Gravel N; Harvey BM; Renken RJ; Dumoulin SO; Cornelissen FW Neuroimage; 2018 Apr; 170():424-433. PubMed ID: 28867341 [TBL] [Abstract][Full Text] [Related]
14. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals. Erdoğan SB; Tong Y; Hocke LM; Lindsey KP; deB Frederick B Front Hum Neurosci; 2016; 10():311. PubMed ID: 27445751 [TBL] [Abstract][Full Text] [Related]
15. Differential coupling between subcortical calcium and BOLD signals during evoked and resting state through simultaneous calcium fiber photometry and fMRI. Tong C; Dai JK; Chen Y; Zhang K; Feng Y; Liang Z Neuroimage; 2019 Oct; 200():405-413. PubMed ID: 31280011 [TBL] [Abstract][Full Text] [Related]
16. The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism. Wan X; Riera J; Iwata K; Takahashi M; Wakabayashi T; Kawashima R Neuroimage; 2006 Aug; 32(2):616-25. PubMed ID: 16697664 [TBL] [Abstract][Full Text] [Related]
17. Integration of EEG source imaging and fMRI during continuous viewing of natural movies. Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829 [TBL] [Abstract][Full Text] [Related]
18. Vascular effects of caffeine found in BOLD fMRI. Yang HS; Liang Z; Yao JF; Shen X; Frederick BD; Tong Y J Neurosci Res; 2019 Apr; 97(4):456-466. PubMed ID: 30488978 [TBL] [Abstract][Full Text] [Related]
19. The resting-state neurovascular coupling relationship: rapid changes in spontaneous neural activity in the somatosensory cortex are associated with haemodynamic fluctuations that resemble stimulus-evoked haemodynamics. Bruyns-Haylett M; Harris S; Boorman L; Zheng Y; Berwick J; Jones M Eur J Neurosci; 2013 Sep; 38(6):2902-16. PubMed ID: 23841797 [TBL] [Abstract][Full Text] [Related]
20. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity. Bächinger M; Zerbi V; Moisa M; Polania R; Liu Q; Mantini D; Ruff C; Wenderoth N J Neurosci; 2017 May; 37(18):4766-4777. PubMed ID: 28385876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]