These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 33250728)

  • 1. Vibration Alert to the Brain: Evoked and Induced MEG Responses to High-Frequency Vibrotactile Stimuli on the Index Finger of Dominant and Non-dominant Hand.
    Kim MY; Kwon H; Yang TH; Kim K
    Front Hum Neurosci; 2020; 14():576082. PubMed ID: 33250728
    [No Abstract]   [Full Text] [Related]  

  • 2. Secondary somatosensory area is involved in vibrotactile temporal-structure processing: MEG analysis of slow cortical potential shifts in humans.
    Hagiwara K; Ogata K; Hironaga N; Tobimatsu S
    Somatosens Mot Res; 2020 Sep; 37(3):222-232. PubMed ID: 32597279
    [No Abstract]   [Full Text] [Related]  

  • 3. Evidence of vibrotactile input to human auditory cortex.
    Caetano G; Jousmäki V
    Neuroimage; 2006 Jan; 29(1):15-28. PubMed ID: 16168673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization of β and γ oscillations in the somatosensory evoked neuromagnetic steady-state response.
    Ross B; Jamali S; Miyazaki T; Fujioka T
    Exp Neurol; 2013 Jul; 245():40-51. PubMed ID: 22955055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrotactile enhancement in hand rehabilitation has a reinforcing effect on sensorimotor brain activities.
    Du Q; Luo J; Cheng Q; Wang Y; Guo S
    Front Neurosci; 2022; 16():935827. PubMed ID: 36267238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation.
    Cheyne D; Gaetz W; Garnero L; Lachaux JP; Ducorps A; Schwartz D; Varela FJ
    Brain Res Cogn Brain Res; 2003 Oct; 17(3):599-611. PubMed ID: 14561448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MEG imaging of sensorimotor areas using inter-trial coherence in vibrotactile steady-state responses.
    Bardouille T; Ross B
    Neuroimage; 2008 Aug; 42(1):323-31. PubMed ID: 18511307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory correlates of vibrotactile frequency processing in human working memory.
    Spitzer B; Wacker E; Blankenburg F
    J Neurosci; 2010 Mar; 30(12):4496-502. PubMed ID: 20335486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatotopic finger mapping using MEG: toward an optimal stimulation paradigm.
    Jamali S; Ross B
    Clin Neurophysiol; 2013 Aug; 124(8):1659-70. PubMed ID: 23518470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change-Driven M100 Component in the Bilateral Secondary Somatosensory Cortex: A Magnetoencephalographic Study.
    Yamashiro K; Sato D; Onishi H; Sugawara K; Otsuru N; Kirimoto H; Nakazawa S; Yamazaki Y; Shirozu H; Maruyama A
    Brain Topogr; 2019 May; 32(3):435-444. PubMed ID: 30443841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas.
    Bauer M; Oostenveld R; Peeters M; Fries P
    J Neurosci; 2006 Jan; 26(2):490-501. PubMed ID: 16407546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatosensory input to non-primary motor areas is enhanced during preparation of cued contraterlateral finger sequence movements.
    Brown MJ; Staines WR
    Behav Brain Res; 2015 Jun; 286():166-74. PubMed ID: 25746454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetoencephalographic study of event-related fields and cortical oscillatory changes during cutaneous warmth processing.
    An KM; Lim S; Lee HJ; Kwon H; Kim MY; Gohel B; Kim JE; Kim K
    Hum Brain Mapp; 2018 May; 39(5):1972-1981. PubMed ID: 29363226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing MEG and EEG in detecting the ~20-Hz rhythm modulation to tactile and proprioceptive stimulation.
    Illman M; Laaksonen K; Liljeström M; Jousmäki V; Piitulainen H; Forss N
    Neuroimage; 2020 Jul; 215():116804. PubMed ID: 32276061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory M50 and M100 sensory gating deficits in bipolar disorder: a MEG study.
    Wang Y; Feng Y; Jia Y; Wang W; Xie Y; Guan Y; Zhong S; Zhu D; Huang L
    J Affect Disord; 2014 Jan; 152-154():131-8. PubMed ID: 24021957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatosensory evoked fields to large-area vibrotactile stimuli.
    Jousmäki V; Hari R
    Clin Neurophysiol; 1999 May; 110(5):905-9. PubMed ID: 10400204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturation of Auditory Cortex Neural Activity in Children and Implications for Auditory Clinical Markers in Diagnosis.
    Edgar JC; Blaskey L; Green HL; Konka K; Shen G; Dipiero MA; Berman JI; Bloy L; Liu S; McBride E; Ku M; Kuschner ES; Airey M; Kim M; Franzen RE; Miller GA; Roberts TPL
    Front Psychiatry; 2020; 11():584557. PubMed ID: 33329127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Right hemispheric dominancy in the auditory evoked magnetic fields for pure-tone stimuli].
    Kanno A; Nakasato N; Fujiwara S; Yoshimoto T
    No To Shinkei; 1996 Mar; 48(3):240-4. PubMed ID: 8868334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of anterior parietal cortex to cutaneous flutter versus vibration.
    Tommerdahl M; Delemos KA; Whitsel BL; Favorov OV; Metz CB
    J Neurophysiol; 1999 Jul; 82(1):16-33. PubMed ID: 10400931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BOLD adaptation in vibrotactile stimulation: neuronal networks involved in frequency discrimination.
    Li Hegner Y; Saur R; Veit R; Butts R; Leiberg S; Grodd W; Braun C
    J Neurophysiol; 2007 Jan; 97(1):264-71. PubMed ID: 17065253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.