These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33250865)

  • 1. Iron Uptake Mechanisms in Marine Phytoplankton.
    Sutak R; Camadro JM; Lesuisse E
    Front Microbiol; 2020; 11():566691. PubMed ID: 33250865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outer Membrane Iron Uptake Pathways in the Model Cyanobacterium Synechocystis sp. Strain PCC 6803.
    Qiu GW; Lou WJ; Sun CY; Yang N; Li ZK; Li DL; Zang SS; Fu FX; Hutchins DA; Jiang HB; Qiu BS
    Appl Environ Microbiol; 2018 Oct; 84(19):. PubMed ID: 30076192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms.
    Kazamia E; Sutak R; Paz-Yepes J; Dorrell RG; Vieira FRJ; Mach J; Morrissey J; Leon S; Lam F; Pelletier E; Camadro JM; Bowler C; Lesuisse E
    Sci Adv; 2018 May; 4(5):eaar4536. PubMed ID: 29774236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA.
    Balhesteros H; Shipelskiy Y; Long NJ; Majumdar A; Katz BB; Santos NM; Leaden L; Newton SM; Marques MV; Klebba PE
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28031282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms.
    McQuaid JB; Kustka AB; Oborník M; Horák A; McCrow JP; Karas BJ; Zheng H; Kindeberg T; Andersson AJ; Barbeau KA; Allen AE
    Nature; 2018 Mar; 555(7697):534-537. PubMed ID: 29539640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron uptake by fungi: contrasted mechanisms with internal or external reduction.
    De Luca NG; Wood PM
    Adv Microb Physiol; 2000; 43():39-74. PubMed ID: 10907554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu transport and complexation by the marine diatom Phaeodactylum tricornutum: Implications for trace metal complexation kinetics in the surface ocean.
    González-Dávila M; Maldonado MT; González AG; Guo J; González-Santana D; Martel A; Santana-Casiano JM
    Sci Total Environ; 2024 Apr; 919():170752. PubMed ID: 38340864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction-dependent siderophore assimilation in a model pennate diatom.
    Coale TH; Moosburner M; Horák A; Oborník M; Barbeau KA; Allen AE
    Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23609-23617. PubMed ID: 31685631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic insight into iron acquisition by sulfate-reducing bacteria in microaerophilic environments.
    Barton LL; Duarte AG; Staicu LC
    Biometals; 2023 Apr; 36(2):339-350. PubMed ID: 35767096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake.
    Morrissey J; Sutak R; Paz-Yepes J; Tanaka A; Moustafa A; Veluchamy A; Thomas Y; Botebol H; Bouget FY; McQuaid JB; Tirichine L; Allen AE; Lesuisse E; Bowler C
    Curr Biol; 2015 Feb; 25(3):364-371. PubMed ID: 25557662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter.
    Velayudhan J; Hughes NJ; McColm AA; Bagshaw J; Clayton CL; Andrews SC; Kelly DJ
    Mol Microbiol; 2000 Jul; 37(2):274-86. PubMed ID: 10931324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of iron uptake mechanisms in marine microalgae: iron binding at the cell surface is a critical step.
    Sutak R; Botebol H; Blaiseau PL; Léger T; Bouget FY; Camadro JM; Lesuisse E
    Plant Physiol; 2012 Dec; 160(4):2271-84. PubMed ID: 23033141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TonB-Dependent Utilization of Dihydroxamate Xenosiderophores in Synechocystis sp. PCC 6803.
    Babykin MM; Obando TSA; Zinchenko VV
    Curr Microbiol; 2018 Feb; 75(2):117-123. PubMed ID: 28900692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters.
    Schalk IJ; Mislin GL; Brillet K
    Curr Top Membr; 2012; 69():37-66. PubMed ID: 23046646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron transport systems of Serratia marcescens.
    Angerer A; Klupp B; Braun V
    J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron uptake pathway of
    Tsylents U; Burmistrz M; Wojciechowska M; Stępień J; Maj P; Trylska J
    Front Microbiol; 2024; 15():1331021. PubMed ID: 38357356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonreductive iron uptake mechanism in the marine alveolate Chromera velia.
    Sutak R; Slapeta J; San Roman M; Camadro JM; Lesuisse E
    Plant Physiol; 2010 Oct; 154(2):991-1000. PubMed ID: 20724644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron bioavailability to phytoplankton: an empirical approach.
    Lis H; Shaked Y; Kranzler C; Keren N; Morel FM
    ISME J; 2015 Mar; 9(4):1003-13. PubMed ID: 25350155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron transporters in marine prokaryotic genomes and metagenomes.
    Hopkinson BM; Barbeau KA
    Environ Microbiol; 2012 Jan; 14(1):114-28. PubMed ID: 21883791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of siderophores in iron acquisition by photosynthetic marine microorganisms.
    Hopkinson BM; Morel FM
    Biometals; 2009 Aug; 22(4):659-69. PubMed ID: 19343508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.