These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2314 related articles for article (PubMed ID: 33250900)
1. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Hack SP; Zhu AX; Wang Y Front Immunol; 2020; 11():598877. PubMed ID: 33250900 [TBL] [Abstract][Full Text] [Related]
2. Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade. Genova C; Dellepiane C; Carrega P; Sommariva S; Ferlazzo G; Pronzato P; Gangemi R; Filaci G; Coco S; Croce M Front Immunol; 2021; 12():799455. PubMed ID: 35069581 [TBL] [Abstract][Full Text] [Related]
3. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Lee WS; Yang H; Chon HJ; Kim C Exp Mol Med; 2020 Sep; 52(9):1475-1485. PubMed ID: 32913278 [TBL] [Abstract][Full Text] [Related]
4. The integration of immune checkpoint inhibitors with VEGF targeted agents in advanced gastric and gastroesophageal adenocarcinoma: a review on the rationale and results of early phase trials. Saeed A; Park R; Sun W J Hematol Oncol; 2021 Jan; 14(1):13. PubMed ID: 33436042 [TBL] [Abstract][Full Text] [Related]
5. Combinations of Bevacizumab With Cancer Immunotherapy. Chen DS; Hurwitz H Cancer J; 2018; 24(4):193-204. PubMed ID: 30119083 [TBL] [Abstract][Full Text] [Related]
6. The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment. Hudson K; Cross N; Jordan-Mahy N; Leyland R Front Immunol; 2020; 11():568931. PubMed ID: 33193345 [TBL] [Abstract][Full Text] [Related]
7. The Intersection between Tumor Angiogenesis and Immune Suppression. Rahma OE; Hodi FS Clin Cancer Res; 2019 Sep; 25(18):5449-5457. PubMed ID: 30944124 [TBL] [Abstract][Full Text] [Related]
8. Small molecular drugs reshape tumor microenvironment to synergize with immunotherapy. Han C; Zhang A; Liu Z; Moore C; Fu YX Oncogene; 2021 Feb; 40(5):885-898. PubMed ID: 33288883 [TBL] [Abstract][Full Text] [Related]
9. Anti-angiogenesis therapy overcomes the innate resistance to PD-1/PD-L1 blockade in VEGFA-overexpressed mouse tumor models. Wang Q; Gao J; Di W; Wu X Cancer Immunol Immunother; 2020 Sep; 69(9):1781-1799. PubMed ID: 32347357 [TBL] [Abstract][Full Text] [Related]
10. Anti-angiogenic Agents in Combination With Immune Checkpoint Inhibitors: A Promising Strategy for Cancer Treatment. Song Y; Fu Y; Xie Q; Zhu B; Wang J; Zhang B Front Immunol; 2020; 11():1956. PubMed ID: 32983126 [TBL] [Abstract][Full Text] [Related]
11. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Wang Z; Wu X Cancer Med; 2020 Nov; 9(21):8086-8121. PubMed ID: 32875727 [TBL] [Abstract][Full Text] [Related]
12. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 3: PD-L1, Intracellular Signaling Pathways and Tumor Microenvironment. Palicelli A; Croci S; Bisagni A; Zanetti E; De Biase D; Melli B; Sanguedolce F; Ragazzi M; Zanelli M; Chaux A; Cañete-Portillo S; Bonasoni MP; Soriano A; Ascani S; Zizzo M; Castro Ruiz C; De Leo A; Giordano G; Landriscina M; Carrieri G; Cormio L; Berney DM; Gandhi J; Copelli V; Bernardelli G; Santandrea G; Bonacini M Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830209 [TBL] [Abstract][Full Text] [Related]
13. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262 [TBL] [Abstract][Full Text] [Related]
14. Programmed death (PD)-1/PD-ligand 1 blockade mediates antiangiogenic effects by tumor-derived CXCL10/11 as a potential predictive biomarker. Mitsuhashi A; Kondoh K; Horikawa K; Koyama K; Nguyen NT; Afroj T; Yoneda H; Otsuka K; Ogino H; Nokihara H; Shinohara T; Nishioka Y Cancer Sci; 2021 Dec; 112(12):4853-4866. PubMed ID: 34628702 [TBL] [Abstract][Full Text] [Related]
15. Clinical Implications of Exosomal PD-L1 in Cancer Immunotherapy. Ayala-Mar S; Donoso-Quezada J; González-Valdez J J Immunol Res; 2021; 2021():8839978. PubMed ID: 33628854 [TBL] [Abstract][Full Text] [Related]
16. Chidamide plus Tyrosine Kinase Inhibitor Remodel the Tumor Immune Microenvironment and Reduce Tumor Progression When Combined with Immune Checkpoint Inhibitor in Naïve and Anti-PD-1 Resistant CT26-Bearing Mice. Chen JS; Hsieh YC; Chou CH; Wu YH; Yang MH; Chu SH; Chao YS; Chen CN Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142591 [TBL] [Abstract][Full Text] [Related]
17. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation. Chen X; Gao A; Zhang F; Yang Z; Wang S; Fang Y; Li J; Wang J; Shi W; Wang L; Zheng Y; Sun Y Theranostics; 2021; 11(7):3392-3416. PubMed ID: 33537094 [No Abstract] [Full Text] [Related]
18. Cross-Talks between Raf Kinase Inhibitor Protein and Programmed Cell Death Ligand 1 Expressions in Cancer: Role in Immune Evasion and Therapeutic Implications. Ho M; Bonavida B Cells; 2024 May; 13(10):. PubMed ID: 38786085 [TBL] [Abstract][Full Text] [Related]
19. Predictive biomarkers of response to PD-1/PD-L1 immune checkpoint inhibitors in non-small cell lung cancer. Shien K; Papadimitrakopoulou VA; Wistuba II Lung Cancer; 2016 Sep; 99():79-87. PubMed ID: 27565919 [TBL] [Abstract][Full Text] [Related]
20. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer. Georganaki M; van Hooren L; Dimberg A Front Immunol; 2018; 9():3081. PubMed ID: 30627131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]