BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33251124)

  • 1. Numerical framework for simulating bio-species transport in microfluidic channels with application to antibody biosensors.
    Shahbazi F; Jabbari M; Esfahani MN; Keshmiri A
    MethodsX; 2020; 7():101132. PubMed ID: 33251124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CFD Modeling of Chamber Filling in a Micro-Biosensor for Protein Detection.
    Islamov M; Sypabekova M; Kanayeva D; Rojas-Solórzano L
    Biosensors (Basel); 2017 Oct; 7(4):. PubMed ID: 28972568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications.
    Luka G; Ahmadi A; Najjaran H; Alocilja E; DeRosa M; Wolthers K; Malki A; Aziz H; Althani A; Hoorfar M
    Sensors (Basel); 2015 Dec; 15(12):30011-31. PubMed ID: 26633409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards CMOS Integrated Microfluidics Using Dielectrophoretic Immobilization.
    Matbaechi Ettehad H; Yadav RK; Guha S; Wenger C
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31195725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Optimization of a Microfluidic Virus Detection Cartridge: A Numerical and Experimental Study.
    Şenel EB; Kizilelma B; Tamdoğan E; Yorulmaz M
    J Biomech Eng; 2023 Oct; 145(10):. PubMed ID: 37382621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices.
    Islam MZ; Tsui YY
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27706104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Modelling of Mixing in a Microfluidic Droplet Using a Two-Phase Moving Frame of Reference Approach.
    Mbanjwa MB; Harding K; Gledhill IMA
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.
    Kumar S; Kumar S; Ali MA; Anand P; Agrawal VV; John R; Maji S; Malhotra BD
    Biotechnol J; 2013 Nov; 8(11):1267-79. PubMed ID: 24019250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force and torque on spherical particles in micro-channel flows using computational fluid dynamics.
    Suo J; Edwards EE; Anilkumar A; Sulchek T; Giddens DP; Thomas SN
    R Soc Open Sci; 2016 Jul; 3(7):160298. PubMed ID: 27493783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensors in microfluidic chips.
    Noh J; Kim HC; Chung TD
    Top Curr Chem; 2011; 304():117-52. PubMed ID: 21516388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-reaction kinetics of microfluidic amperometric biosensors.
    Li H; Lu Y; Wong PK
    Lab Chip; 2018 Oct; 18(20):3086-3089. PubMed ID: 30207365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory, fabrication and applications of microfluidic and nanofluidic biosensors.
    Prakash S; Pinti M; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2012 May; 370(1967):2269-303. PubMed ID: 22509059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced bio-molecular interactions through recirculating microflows.
    Chandrasekaran A; Packirisamy M
    IET Nanobiotechnol; 2008 Jun; 2(2):39-46. PubMed ID: 18500911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flattening of Diluted Species Profile via Passive Geometry in a Microfluidic Device.
    Miles M; Bhattacharjee B; Sridhar N; Fajrial AK; Ball K; Lee YC; Stowell MHB; Old WM; Ding X
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31801276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic-integrated DNA nanobiosensors.
    Ansari MIH; Hassan S; Qurashi A; Khanday FA
    Biosens Bioelectron; 2016 Nov; 85():247-260. PubMed ID: 27179566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Temperature-Jump Boundary Conditions on Heat Transfer for Heterogeneous Microfluidic Immunosensors.
    Echouchene F; Al-Shahrani T; Belmabrouk H
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.
    Szydzik C; Gavela AF; Herranz S; Roccisano J; Knoerzer M; Thurgood P; Khoshmanesh K; Mitchell A; Lechuga LM
    Lab Chip; 2017 Aug; 17(16):2793-2804. PubMed ID: 28682395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of field effect transistor-based biosensors with a digital microfluidic device for a lab-on-a-chip application.
    Choi K; Kim JY; Ahn JH; Choi JM; Im M; Choi YK
    Lab Chip; 2012 Apr; 12(8):1533-9. PubMed ID: 22402581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Printed Microfluidic Biosensors.
    Loo JFC; Ho AHP; Turner APF; Mak WC
    Trends Biotechnol; 2019 Oct; 37(10):1104-1120. PubMed ID: 30992149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.