These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 33251646)
1. Tolerance of three fungal species to lithium and cobalt: Implications for bioleaching of spent rechargeable Li-ion batteries. Lobos A; Harwood VJ; Scott KM; Cunningham JA J Appl Microbiol; 2021 Aug; 131(2):743-755. PubMed ID: 33251646 [TBL] [Abstract][Full Text] [Related]
2. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Bahaloo-Horeh N; Mousavi SM Waste Manag; 2017 Feb; 60():666-679. PubMed ID: 27825532 [TBL] [Abstract][Full Text] [Related]
3. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review. Biswal BK; Balasubramanian R Front Microbiol; 2023; 14():1197081. PubMed ID: 37323903 [TBL] [Abstract][Full Text] [Related]
4. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions. Pathak A; Kothari R; Vinoba M; Habibi N; Tyagi VV J Environ Manage; 2021 Feb; 280():111789. PubMed ID: 33370668 [TBL] [Abstract][Full Text] [Related]
5. Influence of medium components and metabolic inhibitors on citric acid production by Penicillium simplicissimum. Franz A; Burgstaller W; Müller B; Schinner F J Gen Microbiol; 1993 Sep; 139(9):2101-7. PubMed ID: 8245837 [TBL] [Abstract][Full Text] [Related]
6. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions. Sazanova K; Osmolovskaya N; Schiparev S; Yakkonen K; Kuchaeva L; Vlasov D Curr Microbiol; 2015 Apr; 70(4):520-7. PubMed ID: 25502541 [TBL] [Abstract][Full Text] [Related]
7. Environmentally sustainable and cost-effective recycling of Mn-rich Li-ion cells waste: Effect of carbon sources on the leaching efficiency of metals using fungal metabolites. Naseri T; Mousavi SM; Kuchta K Waste Manag; 2023 Feb; 157():47-59. PubMed ID: 36525879 [TBL] [Abstract][Full Text] [Related]
8. Lactic acid bacteria as functional probiotic isolates for inhibiting the growth of Aspergillus flavus, A. parasiticus, A. niger and Penicillium chrysogenum. Abbaszadeh S; Tavakoli R; Sharifzadeh A; Shokri H J Mycol Med; 2015 Dec; 25(4):263-7. PubMed ID: 26597145 [TBL] [Abstract][Full Text] [Related]
9. Comparison of three different bioleaching systems for Li recovery from lepidolite. Sedlakova-Kadukova J; Marcincakova R; Luptakova A; Vojtko M; Fujda M; Pristas P Sci Rep; 2020 Sep; 10(1):14594. PubMed ID: 32884068 [TBL] [Abstract][Full Text] [Related]
10. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Niu Z; Zou Y; Xin B; Chen S; Liu C; Li Y Chemosphere; 2014 Aug; 109():92-8. PubMed ID: 24873712 [TBL] [Abstract][Full Text] [Related]
11. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Amiri F; Yaghmaei S; Mousavi SM Bioresour Technol; 2011 Jan; 102(2):1567-73. PubMed ID: 20863693 [TBL] [Abstract][Full Text] [Related]
12. Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Kim MJ; Seo JY; Choi YS; Kim GH Waste Manag; 2016 May; 51():168-173. PubMed ID: 26584557 [TBL] [Abstract][Full Text] [Related]
13. Phylogenetically divergent bacteria consortium from neutral activated sludge showed heightened potential on bioleaching spent lithium-ion batteries. Cai X; Tian L; Chen C; Huang W; Yu Y; Liu C; Yang B; Lu X; Mao Y Ecotoxicol Environ Saf; 2021 Oct; 223():112592. PubMed ID: 34364128 [TBL] [Abstract][Full Text] [Related]
15. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Santhiya D; Ting YP J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081 [TBL] [Abstract][Full Text] [Related]
16. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Moazzam P; Boroumand Y; Rabiei P; Baghbaderani SS; Mokarian P; Mohagheghian F; Mohammed LJ; Razmjou A Chemosphere; 2021 Aug; 277():130196. PubMed ID: 33784558 [TBL] [Abstract][Full Text] [Related]
17. A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material. Pakostova E; Graves J; Latvyte E; Maddalena G; Horsfall L Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39016549 [TBL] [Abstract][Full Text] [Related]
18. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Nayaka GP; Pai KV; Manjanna J; Keny SJ Waste Manag; 2016 May; 51():234-238. PubMed ID: 26709049 [TBL] [Abstract][Full Text] [Related]
19. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Roy JJ; Cao B; Madhavi S Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of reduced iron species for promoting Li and Co recovery from spent LiCoO Liao X; Ye M; Liang J; Guan Z; Li S; Deng Y; Gan Q; Liu Z; Fang X; Sun S Sci Total Environ; 2022 Jul; 830():154577. PubMed ID: 35304146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]