BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33252219)

  • 1. Controllable Singlet Oxygen Generation in Water Based on Cyclodextrin Secondary Assembly for Targeted Photodynamic Therapy.
    Dai X; Dong X; Liu Z; Liu G; Liu Y
    Biomacromolecules; 2020 Dec; 21(12):5369-5379. PubMed ID: 33252219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Efficiency Synergistic Effect of Supramolecular Nanoparticles Based on Cyclodextrin Prodrug on Cancer Therapy.
    Dai X; Zhang B; Zhou W; Liu Y
    Biomacromolecules; 2020 Dec; 21(12):4998-5007. PubMed ID: 32946217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Controlled Generation of Singlet Oxygen within a Discrete Dual-Stage Metallacycle for Cancer Therapy.
    Qin Y; Chen LJ; Dong F; Jiang ST; Yin GQ; Li X; Tian Y; Yang HB
    J Am Chem Soc; 2019 Jun; 141(22):8943-8950. PubMed ID: 31088049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folic Acid-Modified Cyclodextrin Multivalent Supramolecular Assembly for Photodynamic Therapy.
    Dai X; Huo M; Zhang B; Liu Z; Liu Y
    Biomacromolecules; 2022 Sep; 23(9):3549-3559. PubMed ID: 35921592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicharged Supramolecular Assembly Mediated by Polycationic Cyclodextrin for Efficiently Photodynamic Antibacteria.
    Dai X; Zhang B; Yu Q; Liu Y
    ACS Appl Bio Mater; 2021 Dec; 4(12):8536-8542. PubMed ID: 35005946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of High-Performance Hemithioindigo-Based Photoswitchable AIE Photosensitizer and Enabling Reversible Control Singlet Oxygen Generation.
    Wang J; Wei J; Leng Y; Dai Y; Xie C; Zhang Z; Zhu M; Peng X
    Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma.
    Sebak AA; Gomaa IEO; ElMeshad AN; AbdelKader MH
    Photodiagnosis Photodyn Ther; 2018 Sep; 23():181-189. PubMed ID: 29885810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel active mitochondrion-selective fluorescent probe for the NIR fluorescence imaging and targeted photodynamic therapy of gastric cancer.
    Ding J; Kang X; Feng M; Tan J; Feng Q; Wang X; Wang J; Liu J; Li Z; Guan W; Qiao T
    Biomater Sci; 2022 Aug; 10(17):4756-4763. PubMed ID: 35837996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation.
    Chen D; Long Z; Zhong C; Chen L; Dang Y; Hu JJ; Lou X; Xia F
    ACS Appl Bio Mater; 2021 Jun; 4(6):5231-5239. PubMed ID: 35007005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-Soluble Nanoparticles with Twisted Double [7]Carbohelicene for Lysosome-Targeted Cancer Photodynamic Therapy.
    Zhao H; Xu X; Zhou L; Hu Y; Huang Y; Narita A
    Small; 2022 Jan; 18(1):e2105365. PubMed ID: 34741415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted Photodynamic Killing of Breast Cancer Cells Employing Heptamannosylated β-Cyclodextrin-Mediated Nanoparticle Formation of an Adamantane-Functionalized BODIPY Photosensitizer.
    Zhang Q; Cai Y; Wang XJ; Xu JL; Ye Z; Wang S; Seeberger PH; Yin J
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33405-33411. PubMed ID: 27960381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet-Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy.
    Xiao YF; Chen WC; Chen JX; Lu G; Tian S; Cui X; Zhang Z; Chen H; Wan Y; Li S; Lee CS
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5112-5121. PubMed ID: 35048696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polylysine modified conjugated polymer nanoparticles loaded with the singlet oxygen probe 1,3-diphenylisobenzofuran and the photosensitizer indocyanine green for use in fluorometric sensing and in photodynamic therapy.
    Wang XH; Yu YX; Cheng K; Yang W; Liu YA; Peng HS
    Mikrochim Acta; 2019 Nov; 186(12):842. PubMed ID: 31768653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells.
    Xia J; Zhang L; Qian M; Bao Y; Wang J; Li Y
    J Colloid Interface Sci; 2017 Jul; 498():170-181. PubMed ID: 28324723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions.
    Chepurna OM; Yakovliev A; Ziniuk R; Nikolaeva OA; Levchenko SM; Xu H; Losytskyy MY; Bricks JL; Slominskii YL; Vretik LO; Qu J; Ohulchanskyy TY
    J Nanobiotechnology; 2020 Jan; 18(1):19. PubMed ID: 31973717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclometalated iridium(iii) complex nanoparticles for mitochondria-targeted photodynamic therapy.
    Lu H; Jiang X; Chen Y; Peng K; Huang Y; Zhao H; Chen Q; Lv F; Liu L; Wang S; Ma Y
    Nanoscale; 2020 Jul; 12(26):14061-14067. PubMed ID: 32582896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thylakoid Membranes with Unique Photosystems Used to Simultaneously Produce Self-Supplying Oxygen and Singlet Oxygen for Hypoxic Tumor Therapy.
    Cheng Y; Zheng R; Wu X; Xu K; Song P; Wang Y; Yan J; Chen R; Li X; Zhang H
    Adv Healthc Mater; 2021 Mar; 10(6):e2001666. PubMed ID: 33448152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyelectrolyte nanocomplex formation of heparin-photosensitizer conjugate with polymeric scavenger for photodynamic therapy.
    Li L; Cho H; Kim S; Kang HC; Huh KM
    Carbohydr Polym; 2015 May; 121():122-31. PubMed ID: 25659680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red emitting conjugated polymer based nanophotosensitizers for selectively targeted two-photon excitation imaging guided photodynamic therapy.
    Duan X; Jiang XF; Hu D; Liu P; Li S; Huang F; Ma Y; Xu QH; Cao Y
    Nanoscale; 2018 Dec; 11(1):185-192. PubMed ID: 30525149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifting the absorption to the near-infrared region and inducing a strong photothermal effect by encapsulating zinc(II) phthalocyanine in poly(lactic-co-glycolic acid)-hyaluronic acid nanoparticles.
    Gao D; Wong RCH; Wang Y; Guo X; Yang Z; Lo PC
    Acta Biomater; 2020 Oct; 116():329-343. PubMed ID: 32890751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.