These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 33252645)

  • 1. A framework for modeling epistatic interaction.
    Blumenthal DB; Baumbach J; Hoffmann M; Kacprowski T; List M
    Bioinformatics; 2021 Jul; 37(12):1708-1716. PubMed ID: 33252645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EpiGEN: an epistasis simulation pipeline.
    Blumenthal DB; Viola L; List M; Baumbach J; Tieri P; Kacprowski T
    Bioinformatics; 2020 Dec; 36(19):4957-4959. PubMed ID: 32289146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GADGETS: a genetic algorithm for detecting epistasis using nuclear families.
    Nodzenski M; Shi M; Krahn JM; Wise AS; Li Y; Li L; Umbach DM; Weinberg CR
    Bioinformatics; 2022 Jan; 38(4):1052-1058. PubMed ID: 34788792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS.
    Niel C; Sinoquet C; Dina C; Rocheleau G
    Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for Construction of Genome-Wide Epistatic SNP Networks Using WISH-R Package.
    Kadarmideen HN; Carmelo VAO
    Methods Mol Biol; 2021; 2212():155-168. PubMed ID: 33733355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SEEI: spherical evolution with feedback mechanism for identifying epistatic interactions.
    Tang DY; Mao YJ; Zhao J; Yang J; Li SY; Ren FX; Zheng J
    BMC Genomics; 2024 May; 25(1):462. PubMed ID: 38735952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment.
    Zhu S; Fang G
    Bioinformatics; 2018 Jul; 34(14):2341-2348. PubMed ID: 29509873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CMDR based differential evolution identifies the epistatic interaction in genome-wide association studies.
    Yang CH; Chuang LY; Lin YD
    Bioinformatics; 2017 Aug; 33(15):2354-2362. PubMed ID: 28379338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multipopulation harmony search algorithm for the detection of high-order SNP interactions.
    Tuo S; Liu H; Chen H
    Bioinformatics; 2020 Aug; 36(16):4389-4398. PubMed ID: 32227192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CINOEDV: a co-information based method for detecting and visualizing n-order epistatic interactions.
    Shang J; Sun Y; Liu JX; Xia J; Zhang J; Zheng CH
    BMC Bioinformatics; 2016 May; 17(1):214. PubMed ID: 27184783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxo: a library for calculating penetrance tables of high-order epistasis models.
    Ponte-Fernández C; González-Domínguez J; Carvajal-Rodríguez A; Martín MJ
    BMC Bioinformatics; 2020 Apr; 21(1):138. PubMed ID: 32272874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Admix'em: a flexible framework for forward-time simulations of hybrid populations with selection and mate choice.
    Cui R; Schumer M; Rosenthal GG
    Bioinformatics; 2016 Apr; 32(7):1103-5. PubMed ID: 26615212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values.
    Ning C; Wang D; Kang H; Mrode R; Zhou L; Xu S; Liu JF
    Bioinformatics; 2018 Jun; 34(11):1817-1825. PubMed ID: 29342229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epi2Loc: an R package to investigate two-locus epistatic models.
    Walters RK; Laurin C; Lubke GH
    Twin Res Hum Genet; 2014 Aug; 17(4):272-8. PubMed ID: 24983251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. eCEO: an efficient Cloud Epistasis cOmputing model in genome-wide association study.
    Wang Z; Wang Y; Tan KL; Wong L; Agrawal D
    Bioinformatics; 2011 Apr; 27(8):1045-51. PubMed ID: 21367868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KDSNP: A kernel-based approach to detecting high-order SNP interactions.
    Kodama K; Saigo H
    J Bioinform Comput Biol; 2016 Oct; 14(5):1644003. PubMed ID: 27806683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computationally fast measure of epistasis for 2 SNPs and a categorical phenotype.
    Antoniades A; Matthews PM; Pattichis CS; Galwey NW
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6194-7. PubMed ID: 21097157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction.
    García-Magariños M; López-de-Ullibarri I; Cao R; Salas A
    Ann Hum Genet; 2009 May; 73(Pt 3):360-9. PubMed ID: 19291098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FastEpistasis: a high performance computing solution for quantitative trait epistasis.
    Schüpbach T; Xenarios I; Bergmann S; Kapur K
    Bioinformatics; 2010 Jun; 26(11):1468-9. PubMed ID: 20375113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.