BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 33252735)

  • 1. Cellulosomes: Highly Efficient Cellulolytic Complexes.
    Alves VD; Fontes CMGA; Bule P
    Subcell Biochem; 2021; 96():323-354. PubMed ID: 33252735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
    Artzi L; Bayer EA; Moraïs S
    Nat Rev Microbiol; 2017 Feb; 15(2):83-95. PubMed ID: 27941816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual cohesin-dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome.
    Duarte M; Viegas A; Alves VD; Prates JAM; Ferreira LMA; Najmudin S; Cabrita EJ; Carvalho AL; Fontes CMGA; Bule P
    J Biol Chem; 2021; 296():100552. PubMed ID: 33744293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system.
    Dassa B; Borovok I; Lamed R; Henrissat B; Coutinho P; Hemme CL; Huang Y; Zhou J; Bayer EA
    BMC Genomics; 2012 May; 13():210. PubMed ID: 22646801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cohesin module is a major determinant of cellulosome mechanical stability.
    Galera-Prat A; Moraïs S; Vazana Y; Bayer EA; Carrión-Vázquez M
    J Biol Chem; 2018 May; 293(19):7139-7147. PubMed ID: 29567834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptor Scaffoldins: An Original Strategy for Extended Designer Cellulosomes, Inspired from Nature.
    Stern J; Moraïs S; Lamed R; Bayer EA
    mBio; 2016 Apr; 7(2):e00083. PubMed ID: 27048796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition.
    Moraïs S; Ben David Y; Bensoussan L; Duncan SH; Koropatkin NM; Martens EC; Flint HJ; Bayer EA
    Environ Microbiol; 2016 Feb; 18(2):542-56. PubMed ID: 26347002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of
    Barth A; Hendrix J; Fried D; Barak Y; Bayer EA; Lamb DC
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11274-E11283. PubMed ID: 30429330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes.
    Bule P; Cameron K; Prates JAM; Ferreira LMA; Smith SP; Gilbert HJ; Bayer EA; Najmudin S; Fontes CMGA; Alves VD
    J Biol Chem; 2018 Mar; 293(11):4201-4212. PubMed ID: 29367338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions.
    Hamberg Y; Ruimy-Israeli V; Dassa B; Barak Y; Lamed R; Cameron K; Fontes CM; Bayer EA; Fried DB
    PeerJ; 2014; 2():e636. PubMed ID: 25374780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum.
    Levi Hevroni B; Moraïs S; Ben-David Y; Morag E; Bayer EA
    mBio; 2020 Mar; 11(2):. PubMed ID: 32234813
    [No Abstract]   [Full Text] [Related]  

  • 12. Standalone cohesin as a molecular shuttle in cellulosome assembly.
    Voronov-Goldman M; Yaniv O; Gul O; Yoffe H; Salama-Alber O; Slutzki M; Levy-Assaraf M; Jindou S; Shimon LJ; Borovok I; Bayer EA; Lamed R; Frolow F
    FEBS Lett; 2015 Jun; 589(14):1569-76. PubMed ID: 25896019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique organization and unprecedented diversity of the
    Zhivin O; Dassa B; Moraïs S; Utturkar SM; Brown SD; Henrissat B; Lamed R; Bayer EA
    Biotechnol Biofuels; 2017; 10():211. PubMed ID: 28912832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into a type III cohesin-dockerin recognition interface from the cellulose-degrading bacterium Ruminococcus flavefaciens.
    Weinstein JY; Slutzki M; Karpol A; Barak Y; Gul O; Lamed R; Bayer EA; Fried DB
    J Mol Recognit; 2015 Mar; 28(3):148-54. PubMed ID: 25639797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.
    Hirano K; Nihei S; Hasegawa H; Haruki M; Hirano N
    Appl Environ Microbiol; 2015 Jul; 81(14):4756-66. PubMed ID: 25956772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors.
    Cameron K; Najmudin S; Alves VD; Bayer EA; Smith SP; Bule P; Waller H; Ferreira LM; Gilbert HJ; Fontes CM
    J Biol Chem; 2015 May; 290(21):13578-90. PubMed ID: 25855788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes.
    Bae J; Morisaka H; Kuroda K; Ueda M
    J Mol Microbiol Biotechnol; 2013; 23(4-5):370-8. PubMed ID: 23920499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
    Ortiz de Ora L; Muñoz-Gutiérrez I; Bayer EA; Shoham Y; Lamed R; Borovok I
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency.
    Setter-Lamed E; Moraïs S; Stern J; Lamed R; Bayer EA
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28901714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates.
    Vazana Y; Moraïs S; Barak Y; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():429-52. PubMed ID: 22608740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.