These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33253029)

  • 1. Conductance-Based Adaptive Exponential Integrate-and-Fire Model.
    Górski T; Depannemaecker D; Destexhe A
    Neural Comput; 2021 Jan; 33(1):41-66. PubMed ID: 33253029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient and Accurate Computational Model of Neuron with Spike Frequency Adaptation.
    Ferdous ZI; Yu A; Zeng Y; Guo X; Yan Z; Berdichevsky Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6496-6499. PubMed ID: 34892598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.
    Barranca VJ; Johnson DC; Moyher JL; Sauppe JP; Shkarayev MS; Kovačič G; Cai D
    J Comput Neurosci; 2014 Aug; 37(1):161-80. PubMed ID: 24443127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity.
    Brette R; Gerstner W
    J Neurophysiol; 2005 Nov; 94(5):3637-42. PubMed ID: 16014787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of the cutoff value in the quadratic adaptive integrate-and-fire model.
    Touboul J
    Neural Comput; 2009 Aug; 21(8):2114-22. PubMed ID: 19409056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin-Huxley models.
    Carlu M; Chehab O; Dalla Porta L; Depannemaecker D; Héricé C; Jedynak M; Köksal Ersöz E; Muratore P; Souihel S; Capone C; Zerlaut Y; Destexhe A; di Volo M
    J Neurophysiol; 2020 Mar; 123(3):1042-1051. PubMed ID: 31851573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.
    Ladenbauer J; Augustin M; Shiau L; Obermayer K
    PLoS Comput Biol; 2012; 8(4):e1002478. PubMed ID: 22511861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
    Geisler C; Brunel N; Wang XJ
    J Neurophysiol; 2005 Dec; 94(6):4344-61. PubMed ID: 16093332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronised firing patterns in a random network of adaptive exponential integrate-and-fire neuron model.
    Borges FS; Protachevicz PR; Lameu EL; Bonetti RC; Iarosz KC; Caldas IL; Baptista MS; Batista AM
    Neural Netw; 2017 Jun; 90():1-7. PubMed ID: 28365399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Firing patterns in the adaptive exponential integrate-and-fire model.
    Naud R; Marcille N; Clopath C; Gerstner W
    Biol Cybern; 2008 Nov; 99(4-5):335-47. PubMed ID: 19011922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and bifurcations of the adaptive exponential integrate-and-fire model.
    Touboul J; Brette R
    Biol Cybern; 2008 Nov; 99(4-5):319-34. PubMed ID: 19011921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival.
    Jolivet R; Gerstner W
    J Physiol Paris; 2004; 98(4-6):442-51. PubMed ID: 16274972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks.
    Cavallari S; Panzeri S; Mazzoni A
    Front Neural Circuits; 2014; 8():12. PubMed ID: 24634645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike-Conducting Integrate-and-Fire Model.
    Ashida G; Nogueira W
    eNeuro; 2018; 5(4):. PubMed ID: 30225348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysically grounded mean-field models of neural populations under electrical stimulation.
    Cakan C; Obermayer K
    PLoS Comput Biol; 2020 Apr; 16(4):e1007822. PubMed ID: 32324734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons.
    Zerlaut Y; Chemla S; Chavane F; Destexhe A
    J Comput Neurosci; 2018 Feb; 44(1):45-61. PubMed ID: 29139050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel density-based neural mass model for simulating neuronal network dynamics with conductance-based synapses and membrane current adaptation.
    Huang CH; Lin CK
    Neural Netw; 2021 Nov; 143():183-197. PubMed ID: 34157643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biologically Realistic Mean-Field Models of Conductance-Based Networks of Spiking Neurons with Adaptation.
    Volo MD; Romagnoni A; Capone C; Destexhe A
    Neural Comput; 2019 Apr; 31(4):653-680. PubMed ID: 30764741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Event-driven simulations of nonlinear integrate-and-fire neurons.
    Tonnelier A; Belmabrouk H; Martinez D
    Neural Comput; 2007 Dec; 19(12):3226-38. PubMed ID: 17970651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.