These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33253158)

  • 1. An exact method for quantifying the reliability of end-of-epidemic declarations in real time.
    Parag KV; Donnelly CA; Jha R; Thompson RN
    PLoS Comput Biol; 2020 Nov; 16(11):e1008478. PubMed ID: 33253158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of internationally imported cases on internal spread of COVID-19: a mathematical modelling study.
    Russell TW; Wu JT; Clifford S; Edmunds WJ; Kucharski AJ; Jit M;
    Lancet Public Health; 2021 Jan; 6(1):e12-e20. PubMed ID: 33301722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. International travel-related control measures to contain the COVID-19 pandemic: a rapid review.
    Burns J; Movsisyan A; Stratil JM; Biallas RL; Coenen M; Emmert-Fees KM; Geffert K; Hoffmann S; Horstick O; Laxy M; Klinger C; Kratzer S; Litwin T; Norris S; Pfadenhauer LM; von Philipsborn P; Sell K; Stadelmaier J; Verboom B; Voss S; Wabnitz K; Rehfuess E
    Cochrane Database Syst Rev; 2021 Mar; 3(3):CD013717. PubMed ID: 33763851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel sub-epidemic modeling framework for short-term forecasting epidemic waves.
    Chowell G; Tariq A; Hyman JM
    BMC Med; 2019 Aug; 17(1):164. PubMed ID: 31438953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-spreading events limit the reliable elimination of heterogeneous epidemics.
    Parag KV
    J R Soc Interface; 2021 Aug; 18(181):20210444. PubMed ID: 34404230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Travel-related control measures to contain the COVID-19 pandemic: a rapid review.
    Burns J; Movsisyan A; Stratil JM; Coenen M; Emmert-Fees KM; Geffert K; Hoffmann S; Horstick O; Laxy M; Pfadenhauer LM; von Philipsborn P; Sell K; Voss S; Rehfuess E
    Cochrane Database Syst Rev; 2020 Oct; 10():CD013717. PubMed ID: 33502002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible, Freely Available Stochastic Individual Contact Model for Exploring COVID-19 Intervention and Control Strategies: Development and Simulation.
    Churches T; Jorm L
    JMIR Public Health Surveill; 2020 Sep; 6(3):e18965. PubMed ID: 32568729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile web app for identifying the drivers of COVID-19 epidemics.
    Getz WM; Salter R; Luisa Vissat L; Horvitz N
    J Transl Med; 2021 Mar; 19(1):109. PubMed ID: 33726787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences of delays and imperfect implementation of isolation in epidemic control.
    Young LS; Ruschel S; Yanchuk S; Pereira T
    Sci Rep; 2019 Mar; 9(1):3505. PubMed ID: 30837533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of the Malthusian parameter in an stochastic epidemic model using martingale methods.
    Lindenstrand D; Svensson Å
    Math Biosci; 2013 Dec; 246(2):272-9. PubMed ID: 24427788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The probability of epidemic fade-out is non-monotonic in transmission rate for the Markovian SIR model with demography.
    Ballard PG; Bean NG; Ross JV
    J Theor Biol; 2016 Mar; 393():170-8. PubMed ID: 26796227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual preventive social distancing during an epidemic may have negative population-level outcomes.
    Leung KY; Ball F; Sirl D; Britton T
    J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative method to project the probability of the end of an epidemic: Application to the COVID-19 outbreak in Wuhan, 2020.
    Yuan B; Liu R; Tang S
    J Theor Biol; 2022 Jul; 545():111149. PubMed ID: 35500676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequent travelers and rate of spread of epidemics.
    Hollingsworth TD; Ferguson NM; Anderson RM
    Emerg Infect Dis; 2007 Sep; 13(9):1288-94. PubMed ID: 18252097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemic outbreaks in two-scale community networks.
    Bonaccorsi S; Ottaviano S; De Pellegrini F; Socievole A; Van Mieghem P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012810. PubMed ID: 25122345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact results for a simple epidemic model on a directed network: explorations of a system in a nonequilibrium steady state.
    Shkarayev MS; Zia RK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032107. PubMed ID: 25314395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human mobility and time spent at destination: impact on spatial epidemic spreading.
    Poletto C; Tizzoni M; Colizza V
    J Theor Biol; 2013 Dec; 338():41-58. PubMed ID: 24012488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases.
    Thompson RN; Morgan OW; Jalava K
    Philos Trans R Soc Lond B Biol Sci; 2019 Jul; 374(1776):20180431. PubMed ID: 31104606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous social distancing in response to a simulated epidemic: a virtual experiment.
    Kleczkowski A; Maharaj S; Rasmussen S; Williams L; Cairns N
    BMC Public Health; 2015 Sep; 15():973. PubMed ID: 26415861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outbreaks in susceptible-infected-removed epidemics with multiple seeds.
    Hasegawa T; Nemoto K
    Phys Rev E; 2016 Mar; 93(3):032324. PubMed ID: 27078383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.