BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33253235)

  • 1. Modeling a synthetic aptamer-based riboswitch biosensor sensitive to low hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) concentrations.
    Mayo ML; Eberly JO; Crocker FH; Indest KJ
    PLoS One; 2020; 15(11):e0241664. PubMed ID: 33253235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (RDX) with a microbial sensor.
    Eberly JO; Mayo ML; Carr MR; Crocker FH; Indest KJ
    J Gen Appl Microbiol; 2019 Jul; 65(3):145-150. PubMed ID: 30700648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broad-Spectrum Detection of Tetracyclines by Riboswitch-Based Cell-Free Expression Biosensing.
    Dong X; Cheng Q; Qi S; Qin M; Ding N; Sun Y; Xia Y; Zhang Y; Wang Z
    J Agric Food Chem; 2023 Jun; 71(25):9886-9895. PubMed ID: 37212247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating riboswitch optimality.
    Wayment-Steele H; Wu M; Gotrik M; Das R
    Methods Enzymol; 2019; 623():417-450. PubMed ID: 31239056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing fluorescent biosensors using circular permutations of riboswitches.
    Truong J; Hsieh YF; Truong L; Jia G; Hammond MC
    Methods; 2018 Jul; 143():102-109. PubMed ID: 29458090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fluorogenic RNA-Based Sensor Activated by Metabolite-Induced RNA Dimerization.
    Kim H; Jaffrey SR
    Cell Chem Biol; 2019 Dec; 26(12):1725-1731.e6. PubMed ID: 31631009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer.
    Kellenberger CA; Sales-Lee J; Pan Y; Gassaway MM; Herr AE; Hammond MC
    RNA Biol; 2015; 12(11):1189-97. PubMed ID: 26114964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity.
    Martini L; Meyer AJ; Ellefson JW; Milligan JN; Forlin M; Ellington AD; Mansy SS
    ACS Synth Biol; 2015 Oct; 4(10):1144-50. PubMed ID: 25978303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding.
    Petrone PM; Dewhurst J; Tommasi R; Whitehead L; Pomerantz AK
    J Mol Graph Model; 2011 Sep; 30():179-85. PubMed ID: 21831681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.
    Xiu Y; Jang S; Jones JA; Zill NA; Linhardt RJ; Yuan Q; Jung GY; Koffas MAG
    Biotechnol Bioeng; 2017 Oct; 114(10):2235-2244. PubMed ID: 28543037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace level detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by microimmunosensor.
    Charles PT; Kusterbeck AW
    Biosens Bioelectron; 1999 Apr; 14(4):387-96. PubMed ID: 10422240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct fluoride monitoring using a fluorogenic RNA-based biosensor.
    Khodr R; Husser C; Ryckelynck M
    Methods Enzymol; 2024; 696():85-107. PubMed ID: 38658090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel RNA aptamer-modified riboswitch as chemical sensor.
    Wang J; Yang D; Guo X; Song Q; Tan L; Dong L
    Anal Chim Acta; 2020 Mar; 1100():240-249. PubMed ID: 31987147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6868-6872. PubMed ID: 29663603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of pressurized liquid extraction (PLE)/gas chromatography-electron capture detection (GC-ECD) for the determination of biodegradation intermediates of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soils.
    Zhang B; Pan X; Cobb GP; Anderson TA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Sep; 824(1-2):277-82. PubMed ID: 16112625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy.
    Nakayama S; Luo Y; Zhou J; Dayie TK; Sintim HO
    Chem Commun (Camb); 2012 Sep; 48(72):9059-61. PubMed ID: 22854718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors.
    Kellenberger CA; Hammond MC
    Methods Enzymol; 2015; 550():147-72. PubMed ID: 25605385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles.
    Naja G; Halasz A; Thiboutot S; Ampleman G; Hawari J
    Environ Sci Technol; 2008 Jun; 42(12):4364-70. PubMed ID: 18605556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of RNA-based c-di-GMP fluorescent sensors through tuning their structural modules.
    Inuzuka S; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2016 Aug; 122(2):183-7. PubMed ID: 26968125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
    Meyer SA; Marchand AJ; Hight JL; Roberts GH; Escalon LB; Inouye LS; MacMillan DK
    J Appl Toxicol; 2005; 25(5):427-34. PubMed ID: 16092083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.