These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33253275)

  • 21. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria?
    Gong H; Hu X; Zhang L; Fa K; Liao M; Liu H; Fragneto G; Campana M; Lu JR
    J Colloid Interface Sci; 2023 May; 637():182-192. PubMed ID: 36701864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Applications of Aggregation Induced Emission Probes for Antimicrobial Peptide Studies.
    Luu T; Li W; O'Brien-Simpson NM; Hong Y
    Chem Asian J; 2021 May; 16(9):1027-1040. PubMed ID: 33723926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Similarities and differences for membranotropic action of three unnatural antimicrobial peptides.
    Oliva R; Chino M; Lombardi A; Nastri F; Notomista E; Petraccone L; Del Vecchio P
    J Pept Sci; 2020 Aug; 26(8):e3270. PubMed ID: 32558092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How do cyclic antibiotics with activity against Gram-negative bacteria permeate membranes? A machine learning informed experimental study.
    Lee MW; de Anda J; Kroll C; Bieniossek C; Bradley K; Amrein KE; Wong GCL
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183302. PubMed ID: 32311341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-Depth In Silico Search for Cuttlefish (
    Benoist L; Houyvet B; Henry J; Corre E; Zanuttini B; Zatylny-Gaudin C
    Mar Drugs; 2020 Aug; 18(9):. PubMed ID: 32847054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.
    Balleza D; Alessandrini A; Beltrán García MJ
    J Membr Biol; 2019 Jun; 252(2-3):131-157. PubMed ID: 31098678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potent Activity of Hybrid Arthropod Antimicrobial Peptides Linked by Glycine Spacers.
    Tonk M; Valdés JJ; Cabezas-Cruz A; Vilcinskas A
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaflet by Leaflet Synergistic Effects of Antimicrobial Peptides on Bacterial and Mammalian Membrane Models.
    Roy A; Sarangi NK; Ghosh S; Prabhakaran A; Keyes TE
    J Phys Chem Lett; 2023 Apr; 14(16):3920-3928. PubMed ID: 37075204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers.
    Nelson N; Schwartz DK
    Biophys J; 2018 Jun; 114(11):2606-2616. PubMed ID: 29874611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Hydrophobic Amino Acid Substitutions on Antimicrobial Peptide Behavior.
    Saint Jean KD; Henderson KD; Chrom CL; Abiuso LE; Renn LM; Caputo GA
    Probiotics Antimicrob Proteins; 2018 Sep; 10(3):408-419. PubMed ID: 29103131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of the antimicrobial activity and selectivity of GNU7 against Gram-negative bacteria by fusion with LPS-targeting peptide.
    Kim H; Jang JH; Kim SC; Cho JH
    Peptides; 2016 Aug; 82():60-66. PubMed ID: 27242337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EcDBS1R4, an Antimicrobial Peptide Effective against
    Makowski M; Felício MR; Fensterseifer ICM; Franco OL; Santos NC; Gonçalves S
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33265989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization.
    Wade HM; Darling LEO; Elmore DE
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182980. PubMed ID: 31067436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure Elucidation and Functional Studies of a Novel β-hairpin Antimicrobial Peptide from the Marine Polychaeta
    Panteleev PV; Tsarev AV; Safronova VN; Reznikova OV; Bolosov IA; Sychev SV; Shenkarev ZO; Ovchinnikova TV
    Mar Drugs; 2020 Dec; 18(12):. PubMed ID: 33291782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial membranes as predictors of antimicrobial potency.
    Epand RM; Rotem S; Mor A; Berno B; Epand RF
    J Am Chem Soc; 2008 Oct; 130(43):14346-52. PubMed ID: 18826221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Salt-resistant short antimicrobial peptides.
    Mohanram H; Bhattacharjya S
    Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polydim-I antimicrobial activity against MDR bacteria and its model membrane interaction.
    Rangel M; Castro FFDS; Mota-Lima LD; Clissa PB; Martins DB; Cabrera MPDS; Mortari MR
    PLoS One; 2017; 12(6):e0178785. PubMed ID: 28570651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure.
    Lee TH; Hall KN; Aguilar MI
    Curr Top Med Chem; 2016; 16(1):25-39. PubMed ID: 26139112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ
    Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility.
    Paracini N; Clifton LA; Skoda MWA; Lakey JH
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7587-E7594. PubMed ID: 30037998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.