BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33253383)

  • 1. What makes a fig: insights from a comparative analysis of inflorescence morphogenesis in Moraceae.
    Leite VG; Kjellberg F; Pereira RAS; Teixeira SP
    Ann Bot; 2021 Apr; 127(5):621-631. PubMed ID: 33253383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the origin of the fig: phylogenetic relationships of Moraceae from ndhF sequences.
    Datwyler SL; Weiblen GD
    Am J Bot; 2004 May; 91(5):767-77. PubMed ID: 21653431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of fig glands is associated with nursery mutualism in fig trees.
    Souza CD; Pereira RA; Marinho CR; Kjellberg F; Teixeira SP
    Am J Bot; 2015 Oct; 102(10):1564-77. PubMed ID: 26419809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest.
    Sakai S
    Am J Bot; 2001 Sep; 88(9):1527-34. PubMed ID: 21669685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of the ostiole in the fig-fig wasp mutualism from a morpho-anatomical perspective.
    Castro-Cárdenas N; Vázquez-Santana S; Teixeira SP; Ibarra-Manríquez G
    J Plant Res; 2022 Nov; 135(6):739-755. PubMed ID: 36264520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interplay between inflorescence development and function as the crucible of architectural diversity.
    Harder LD; Prusinkiewicz P
    Ann Bot; 2013 Nov; 112(8):1477-93. PubMed ID: 23243190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary and morphometric implications of morphological variation among flowers within an inflorescence: a case-study using European orchids.
    Bateman RM; Rudall PJ
    Ann Bot; 2006 Nov; 98(5):975-93. PubMed ID: 17018569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant geographic phenotypic variation drives diversification in its associated community of a phytophagous insect and its parasitoids.
    Yu H; Liang D; Tian E; Zheng L; Kjellberg F
    BMC Evol Biol; 2018 Sep; 18(1):134. PubMed ID: 30180795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of inflorescence development in Oleaceae.
    Naghiloo S; Dadpour MR; Gohari G; Endress PK
    Am J Bot; 2013 Apr; 100(4):647-63. PubMed ID: 23482481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific organic acid metabolism in reproductive and non-reproductive parts of the fig fruit is partially induced by pollination.
    Lama K; Peer R; Shlizerman L; Meir S; Doron-Faigenboim A; Sadka A; Aharoni A; Flaishman MA
    Physiol Plant; 2020 Jan; 168(1):133-147. PubMed ID: 30740711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culture-free survey reveals diverse and distinctive fungal communities associated with developing figs (Ficus spp.) in Panama.
    Martinson EO; Herre EA; Machado CA; Arnold AE
    Microb Ecol; 2012 Nov; 64(4):1073-84. PubMed ID: 22729017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of growth habit, inflorescence architecture, flower size, and fruit type in Rubiaceae: its ecological and evolutionary implications.
    Razafimandimbison SG; Ekman S; McDowell TD; Bremer B
    PLoS One; 2012; 7(7):e40851. PubMed ID: 22815842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos of Wolbachia sequences inside the compact fig syconia of Ficus benjamina (Ficus: moraceae).
    Yang CY; Xiao JH; Niu LM; Ma GC; Cook JM; Bian SN; Fu YG; Huang DW
    PLoS One; 2012; 7(11):e48882. PubMed ID: 23145008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of mammalian herbivory on inflorescence architecture in ornithophilous Babiana (Iridaceae): implications for the evolution of a bird perch.
    de Waal C; Barrett SC; Anderson B
    Am J Bot; 2012 Jun; 99(6):1096-103. PubMed ID: 22615309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flower orientation influences the consistency of bumblebee movement within inflorescences.
    Jordan CY; Natta M; Harder LD
    Ann Bot; 2016 Sep; 118(3):523-7. PubMed ID: 27425843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key developmental transitions during flower morphogenesis and their regulation.
    Wagner D
    Curr Opin Genet Dev; 2017 Aug; 45():44-50. PubMed ID: 28314174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flower-like heads from flower-like meristems: pseudanthium development in Davidia involucrata (Nyssaceae).
    Claßen-Bockhoff R; Arndt M
    J Plant Res; 2018 May; 131(3):443-458. PubMed ID: 29569169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and development of flowers and inflorescences in Peraceae and Euphorbiaceae and the evolution of pseudanthia in Malpighiales.
    Gagliardi KB; Cordeiro I; Demarco D
    PLoS One; 2018; 13(10):e0203954. PubMed ID: 30281673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Papilionoid inflorescences revisited (Leguminosae-Papilionoideae).
    Prenner G
    Ann Bot; 2013 Nov; 112(8):1567-76. PubMed ID: 23235698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new pollination system: brood-site pollination by flower bugs in Macaranga (Euphorbiaceae).
    Ishida C; Kono M; Sakai S
    Ann Bot; 2009 Jan; 103(1):39-44. PubMed ID: 18996950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.