BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 33253435)

  • 1. The Arabidopsis leucine-rich repeat receptor-like kinase MIK2 is a crucial component of early immune responses to a fungal-derived elicitor.
    Coleman AD; Maroschek J; Raasch L; Takken FLW; Ranf S; Hückelhoven R
    New Phytol; 2021 Mar; 229(6):3453-3466. PubMed ID: 33253435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2.
    Rhodes J; Yang H; Moussu S; Boutrot F; Santiago J; Zipfel C
    Nat Commun; 2021 Jan; 12(1):705. PubMed ID: 33514716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arabidopsis MIK2 receptor elicits immunity by sensing a conserved signature from phytocytokines and microbes.
    Hou S; Liu D; Huang S; Luo D; Liu Z; Xiang Q; Wang P; Mu R; Han Z; Chen S; Chai J; Shan L; He P
    Nat Commun; 2021 Sep; 12(1):5494. PubMed ID: 34535661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses.
    Van der Does D; Boutrot F; Engelsdorf T; Rhodes J; McKenna JF; Vernhettes S; Koevoets I; Tintor N; Veerabagu M; Miedes E; Segonzac C; Roux M; Breda AS; Hardtke CS; Molina A; Rep M; Testerink C; Mouille G; Höfte H; Hamann T; Zipfel C
    PLoS Genet; 2017 Jun; 13(6):e1006832. PubMed ID: 28604776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis.
    Prince DC; Drurey C; Zipfel C; Hogenhout SA
    Plant Physiol; 2014 Apr; 164(4):2207-19. PubMed ID: 24586042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes.
    Mendy B; Wang'ombe MW; Radakovic ZS; Holbein J; Ilyas M; Chopra D; Holton N; Zipfel C; Grundler FM; Siddique S
    PLoS Pathog; 2017 Apr; 13(4):e1006284. PubMed ID: 28406987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of Microbe- and Damage-Associated Molecular Patterns by Leucine-Rich Repeat Pattern Recognition Receptor Kinases Confers Salt Tolerance in Plants.
    Loo EP; Tajima Y; Yamada K; Kido S; Hirase T; Ariga H; Fujiwara T; Tanaka K; Taji T; Somssich IE; Parker JE; Saijo Y
    Mol Plant Microbe Interact; 2022 Jul; 35(7):554-566. PubMed ID: 34726476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic screens identify a new phytobacterial microbe-associated molecular pattern and the cognate Arabidopsis receptor-like kinase that mediates its immune elicitation.
    Mott GA; Thakur S; Smakowska E; Wang PW; Belkhadir Y; Desveaux D; Guttman DS
    Genome Biol; 2016 May; 17():98. PubMed ID: 27160854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1.
    Fan L; Fröhlich K; Melzer E; Pruitt RN; Albert I; Zhang L; Joe A; Hua C; Song Y; Albert M; Kim ST; Weigel D; Zipfel C; Chae E; Gust AA; Nürnberger T
    Nat Commun; 2022 Mar; 13(1):1294. PubMed ID: 35277499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis immune responses triggered by cellulose- and mixed-linked glucan-derived oligosaccharides require a group of leucine-rich repeat malectin receptor kinases.
    Martín-Dacal M; Fernández-Calvo P; Jiménez-Sandoval P; López G; Garrido-Arandía M; Rebaque D; Del Hierro I; Berlanga DJ; Torres MÁ; Kumar V; Mélida H; Pacios LF; Santiago J; Molina A
    Plant J; 2023 Feb; 113(4):833-850. PubMed ID: 36582174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leucine rich repeat-malectin receptor kinases IGP1/CORK1, IGP3 and IGP4 are required for arabidopsis immune responses triggered by β-1,4-D-Xylo-oligosaccharides from plant cell walls.
    Fernández-Calvo P; López G; Martín-Dacal M; Aitouguinane M; Carrasco-López C; González-Bodí S; Bacete L; Mélida H; Sánchez-Vallet A; Molina A
    Cell Surf; 2024 Jun; 11():100124. PubMed ID: 38600908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the pattern-triggered immunity pathway to enhance resistance to Fusarium graminearum.
    Sarowar S; Alam ST; Makandar R; Lee H; Trick HN; Dong Y; Shah J
    Mol Plant Pathol; 2019 May; 20(5):626-640. PubMed ID: 30597698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants.
    Heese A; Hann DR; Gimenez-Ibanez S; Jones AM; He K; Li J; Schroeder JI; Peck SC; Rathjen JP
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):12217-22. PubMed ID: 17626179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi.
    Zhang W; Fraiture M; Kolb D; Löffelhardt B; Desaki Y; Boutrot FF; Tör M; Zipfel C; Gust AA; Brunner F
    Plant Cell; 2013 Oct; 25(10):4227-41. PubMed ID: 24104566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Fungal Elicitor-Triggered Plant Immunity.
    Guo J; Cheng Y
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection.
    Tintor N; Ross A; Kanehara K; Yamada K; Fan L; Kemmerling B; Nürnberger T; Tsuda K; Saijo Y
    Proc Natl Acad Sci U S A; 2013 Apr; 110(15):6211-6. PubMed ID: 23431187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subtilase-mediated biogenesis of the expanded family of SERINE RICH ENDOGENOUS PEPTIDES.
    Yang H; Kim X; Skłenar J; Aubourg S; Sancho-Andrés G; Stahl E; Guillou MC; Gigli-Bisceglia N; Tran Van Canh L; Bender KW; Stintzi A; Reymond P; Sánchez-Rodríguez C; Testerink C; Renou JP; Menke FLH; Schaller A; Rhodes J; Zipfel C
    Nat Plants; 2023 Dec; 9(12):2085-2094. PubMed ID: 38049516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity.
    Huang PY; Yeh YH; Liu AC; Cheng CP; Zimmerli L
    Plant J; 2014 Jul; 79(2):243-55. PubMed ID: 24844677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The MIK2/SCOOP Signaling System Contributes to Arabidopsis Resistance Against Herbivory by Modulating Jasmonate and Indole Glucosinolate Biosynthesis.
    Stahl E; Fernandez Martin A; Glauser G; Guillou MC; Aubourg S; Renou JP; Reymond P
    Front Plant Sci; 2022; 13():852808. PubMed ID: 35401621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dominant-interfering camta3 mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in Arabidopsis thaliana.
    Jacob F; Kracher B; Mine A; Seyfferth C; Blanvillain-Baufumé S; Parker JE; Tsuda K; Schulze-Lefert P; Maekawa T
    New Phytol; 2018 Mar; 217(4):1667-1680. PubMed ID: 29226970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.