These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33253464)

  • 21. Single-Stranded Tile Stoppers for Interlocked DNA Architectures.
    Valero J; Lohmann F; Keppner D; Famulok M
    Chembiochem; 2016 Jun; 17(12):1146-9. PubMed ID: 26972112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lanthanide-Containing Rotaxanes, Catenanes, and Knots.
    Evans NH
    Chempluschem; 2020 Apr; 85(4):783-792. PubMed ID: 32319722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designed Synthesis of an Aluminum Molecular Ring Based Rotaxane and Polyrotaxane.
    Liu YJ; Zheng C; Xiao H; Wang Z; Zhang CY; Wang ST; Fang WH; Zhang J
    Angew Chem Int Ed Engl; 2024 Jul; ():e202411576. PubMed ID: 38984566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constructions of two polycatenanes and one polypseudo-rotaxane by discrete tetrahedral cages and stool-like building units.
    Jiang L; Ju P; Meng XR; Kuang XJ; Lu TB
    Sci Rep; 2012; 2():668. PubMed ID: 22993693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A High-Yielding Active Template Click Reaction (AT-CuAAC) for the Synthesis of Mechanically Interlocked Nanohoops.
    May JH; Fehr JM; Lorenz JC; Zakharov LN; Jasti R
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202401823. PubMed ID: 38386798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of photoswitchable rotaxanes and catenanes containing dithienylethene fragments.
    Li Z; Han X; Chen H; Wu D; Hu F; Liu SH; Yin J
    Org Biomol Chem; 2015 Jul; 13(26):7313-22. PubMed ID: 26059864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule.
    Mena-Hernando S; Pérez EM
    Chem Soc Rev; 2019 Oct; 48(19):5016-5032. PubMed ID: 31418435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disproof of the Structures and Biosynthesis of Ergoynes, Gs-Polyyne-l-Ergothioneine Cycloadducts from
    Kawahara D; Kai K
    J Org Chem; 2024 Apr; 89(8):5715-5725. PubMed ID: 38593068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches.
    Wang W; Chen LJ; Wang XQ; Sun B; Li X; Zhang Y; Shi J; Yu Y; Zhang L; Liu M; Yang HB
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5597-601. PubMed ID: 25902491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptide-based rotaxanes and catenanes: an emerging class of supramolecular chemistry systems.
    Moretto A; Crisma M; Formaggio F; Toniolo C
    Biomol Concepts; 2012 Apr; 3(2):183-92. PubMed ID: 25436531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of rotaxanes and catenanes using an imine clipping reaction.
    Han X; Liu G; Liu SH; Yin J
    Org Biomol Chem; 2016 Nov; 14(44):10331-10351. PubMed ID: 27714207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-Synthetic Macrocyclization of Rotaxane Building Blocks.
    Gauthier M; Waelès P; Coutrot F
    Chempluschem; 2021 Nov; 87(3):e202100458. PubMed ID: 34811956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Symbiotic Control in Mechanical Bond Formation.
    Wang Y; Sun J; Liu Z; Nassar MS; Botros YY; Stoddart JF
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12387-92. PubMed ID: 27605257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design, synthesis and photoinduced processes in molecular interlocked photosynthetic [60]fullerene systems.
    Megiatto JD; Guldi DM; Schuster DI
    Chem Soc Rev; 2020 Jan; 49(1):8-20. PubMed ID: 31808480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding coordination equilibria in solution and gel-phase [2]rotaxanes.
    Hewson SW; Mullen KM
    Org Biomol Chem; 2018 Nov; 16(44):8569-8578. PubMed ID: 30375613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanically interlocked single-wall carbon nanotubes.
    de Juan A; Pouillon Y; Ruiz-González L; Torres-Pardo A; Casado S; Martín N; Rubio Á; Pérez EM
    Angew Chem Int Ed Engl; 2014 May; 53(21):5394-400. PubMed ID: 24729452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Properties and emerging applications of mechanically interlocked ligands.
    Lewis JE; Galli M; Goldup SM
    Chem Commun (Camb); 2016 Dec; 53(2):298-312. PubMed ID: 27819362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-range movement of large mechanically interlocked DNA nanostructures.
    List J; Falgenhauer E; Kopperger E; Pardatscher G; Simmel FC
    Nat Commun; 2016 Aug; 7():12414. PubMed ID: 27492061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.
    Lu CH; Cecconello A; Willner I
    J Am Chem Soc; 2016 Apr; 138(16):5172-85. PubMed ID: 27019201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic and thermodynamic approaches for the efficient formation of mechanical bonds.
    Dichtel WR; Miljanić OS; Zhang W; Spruell JM; Patel K; Aprahamian I; Heath JR; Stoddart JF
    Acc Chem Res; 2008 Dec; 41(12):1750-61. PubMed ID: 18837521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.