These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33253542)

  • 1. Characterizing the Molecular Architecture of Hydrogels and Crosslinked Polymer Networks beyond Flory-Rehner-I. Theory.
    Borges FTP; Papavasiliou G; Teymour F
    Biomacromolecules; 2020 Dec; 21(12):5104-5118. PubMed ID: 33253542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the Molecular Architecture of Hydrogels and Crosslinked Polymer Networks beyond Flory-Rehner. II: Experiments.
    Borges FTP; Papavasiliou G; Teymour F
    Biomacromolecules; 2023 Apr; 24(4):1585-1603. PubMed ID: 36929746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adding the Effect of Topological Defects to the Flory-Rehner and Bray-Merrill Swelling Theories.
    Rebello NJ; Beech HK; Olsen BD
    ACS Macro Lett; 2021 May; 10(5):531-537. PubMed ID: 35570765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.
    Jimenez-Vergara AC; Lewis J; Hahn MS; Munoz-Pinto DJ
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1339-1348. PubMed ID: 28714234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swelling of micro-hydrogels with a crosslinker gradient.
    Boon N; Schurtenberger P
    Phys Chem Chem Phys; 2017 Sep; 19(35):23740-23746. PubMed ID: 28607971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Poly(sorbitol adipate)-
    Rashid H; Lucas H; Busse K; Kressler J; Mäder K; Trutschel ML
    Gels; 2023 Dec; 10(1):. PubMed ID: 38247740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil.
    Ranjha NM; Ayub G; Naseem S; Ansari MT
    J Mater Sci Mater Med; 2010 Oct; 21(10):2805-16. PubMed ID: 20686825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties.
    Yang J; Gong C; Shi FK; Xie XM
    J Phys Chem B; 2012 Oct; 116(39):12038-47. PubMed ID: 22950674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupling diffusion and macromolecular relaxation in the release of vitamin B6 from genipin-crosslinked whey protein networks.
    Teimouri S; Dekiwadia C; Kasapis S
    Food Chem; 2021 Jun; 346():128886. PubMed ID: 33422921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers.
    Kim S; Lee K; Cha C
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1698-1711. PubMed ID: 27573586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extension of the Flory-Rehner Theory of Swelling to an Anisotropic Polymer System.
    Bruck SD
    J Res Natl Bur Stand A Phys Chem; 1961; 65A(6):485-487. PubMed ID: 32196204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational-Based Design of Hydrogels with Predictable Mesh Properties.
    Campbell KT; Wysoczynski K; Hadley DJ; Silva EA
    ACS Biomater Sci Eng; 2020 Jan; 6(1):308-319. PubMed ID: 33313390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-induced tailoring of PEG-hydrogel properties.
    Andreopoulos FM; Beckman EJ; Russell AJ
    Biomaterials; 1998 Aug; 19(15):1343-52. PubMed ID: 9758034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable enzymatically degradable hydrogels for controlled cargo release with dynamic mechanical properties.
    Tanimoto R; Ebara M; Uto K
    Soft Matter; 2023 Aug; 19(33):6224-6233. PubMed ID: 37493066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of dextran-based hydrogels obtained chemoenzymatically.
    Ferreira L; Figueiredo MM; Gil MH; Ramos MA
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):55-64. PubMed ID: 16211568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophilic and amphiphilic polyethylene glycol-based hydrogels with tunable degradability prepared by "click" chemistry.
    Truong V; Blakey I; Whittaker AK
    Biomacromolecules; 2012 Dec; 13(12):4012-21. PubMed ID: 23134321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making Highly Elastic and Tough Hydrogels from Doughs.
    Nian G; Kim J; Bao X; Suo Z
    Adv Mater; 2022 Dec; 34(50):e2206577. PubMed ID: 36126085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Features of silicon- and titanium-polyethylene glycol precursors in sol-gel synthesis of new hydrogels.
    Khonina TG; Safronov AP; Ivanenko MV; Shadrina EV; Chupakhin ON
    J Mater Chem B; 2015 Jul; 3(27):5490-5500. PubMed ID: 32262520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release.
    Ankareddi I; Brazel CS
    Int J Pharm; 2007 May; 336(2):241-7. PubMed ID: 17234371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z; Zhang Y; Markland P; Yang VC
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.