These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 33253667)
21. Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer. Orekhov PS; Bozdaganyan ME; Voskoboynikova N; Mulkidjanian AY; Steinhoff HJ; Shaitan KV Langmuir; 2019 Mar; 35(10):3748-3758. PubMed ID: 30773011 [TBL] [Abstract][Full Text] [Related]
22. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer. Dominguez Pardo JJ; Dörr JM; Iyer A; Cox RC; Scheidelaar S; Koorengevel MC; Subramaniam V; Killian JA Eur Biophys J; 2017 Jan; 46(1):91-101. PubMed ID: 27815573 [TBL] [Abstract][Full Text] [Related]
23. Molecular model for the solubilization of membranes into nanodisks by styrene maleic Acid copolymers. Scheidelaar S; Koorengevel MC; Pardo JD; Meeldijk JD; Breukink E; Killian JA Biophys J; 2015 Jan; 108(2):279-90. PubMed ID: 25606677 [TBL] [Abstract][Full Text] [Related]
24. Separation and identification of the light harvesting proteins contained in grana and stroma thylakoid membrane fractions. Timperio AM; Huber CG; Zolla L J Chromatogr A; 2004 Jun; 1040(1):73-81. PubMed ID: 15248427 [TBL] [Abstract][Full Text] [Related]
25. Native nanodiscs formed by styrene maleic acid copolymer derivatives help recover infectious prion multimers bound to brain-derived lipids. Esmaili M; Tancowny BP; Wang X; Moses A; Cortez LM; Sim VL; Wille H; Overduin M J Biol Chem; 2020 Jun; 295(25):8460-8469. PubMed ID: 32358064 [TBL] [Abstract][Full Text] [Related]
26. The mobile thylakoid phosphoprotein TSP9 interacts with the light-harvesting complex II and the peripheries of both photosystems. Hansson M; Dupuis T; Strömquist R; Andersson B; Vener AV; Carlberg I J Biol Chem; 2007 Jun; 282(22):16214-22. PubMed ID: 17400553 [TBL] [Abstract][Full Text] [Related]
27. Membrane Solubilization by Styrene-Maleic Acid Copolymers: Delineating the Role of Polymer Length. Domínguez Pardo JJ; Koorengevel MC; Uwugiaren N; Weijers J; Kopf AH; Jahn H; van Walree CA; van Steenbergen MJ; Killian JA Biophys J; 2018 Jul; 115(1):129-138. PubMed ID: 29972804 [TBL] [Abstract][Full Text] [Related]
28. Benchmarks of SMA-Copolymer Derivatives and Nanodisc Integrity. Di Mauro GM; La Rosa C; Condorelli M; Ramamoorthy A Langmuir; 2021 Mar; 37(10):3113-3121. PubMed ID: 33645999 [TBL] [Abstract][Full Text] [Related]
29. Thermotropic properties of phosphatidylcholine nanodiscs bounded by styrene-maleic acid copolymers. Dominguez Pardo JJ; Dörr JM; Renne MF; Ould-Braham T; Koorengevel MC; van Steenbergen MJ; Killian JA Chem Phys Lipids; 2017 Nov; 208():58-64. PubMed ID: 28923687 [TBL] [Abstract][Full Text] [Related]
30. Purification of Chloroplasts and Chloroplast Subfractions: Envelope, Thylakoids, and Stroma-From Spinach, Pea, and Arabidopsis thaliana. Block MA; Albrieux C Methods Mol Biol; 2018; 1829():123-135. PubMed ID: 29987718 [TBL] [Abstract][Full Text] [Related]
31. The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Gómez SM; Nishio JN; Faull KF; Whitelegge JP Mol Cell Proteomics; 2002 Jan; 1(1):46-59. PubMed ID: 12096140 [TBL] [Abstract][Full Text] [Related]
32. Biological insights from SMA-extracted proteins. Unger L; Ronco-Campaña A; Kitchen P; Bill RM; Rothnie AJ Biochem Soc Trans; 2021 Jun; 49(3):1349-1359. PubMed ID: 34110372 [TBL] [Abstract][Full Text] [Related]
33. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy. Dörr JM; van Coevorden-Hameete MH; Hoogenraad CC; Killian JA Biochim Biophys Acta Biomembr; 2017 Nov; 1859(11):2155-2160. PubMed ID: 28847501 [TBL] [Abstract][Full Text] [Related]
34. Purification of Potassium Ion Channels Using Styrene-Maleic Acid Copolymers. Glukhov G; Karlova M; Kravchuk E; Glukhova A; Trifonova E; Sokolova OS Methods Mol Biol; 2024; 2796():73-86. PubMed ID: 38856895 [TBL] [Abstract][Full Text] [Related]
36. Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nano-particles. Grime RL; Logan RT; Nestorow SA; Sridhar P; Edwards PC; Tate CG; Klumperman B; Dafforn TR; Poyner DR; Reeves PJ; Wheatley M Nanoscale; 2021 Aug; 13(31):13519-13528. PubMed ID: 34477756 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and Evaluation of a Library of Alternating Amphipathic Copolymers to Solubilize and Study Membrane Proteins. Kopf AH; Lijding O; Elenbaas BOW; Koorengevel MC; Dobruchowska JM; van Walree CA; Killian JA Biomacromolecules; 2022 Mar; 23(3):743-759. PubMed ID: 34994549 [TBL] [Abstract][Full Text] [Related]
38. Membrane biology visualized in nanometer-sized discs formed by styrene maleic acid polymers. Esmaili M; Overduin M Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):257-263. PubMed ID: 29056560 [TBL] [Abstract][Full Text] [Related]
39. Extraction and reconstitution of membrane proteins into lipid nanodiscs encased by zwitterionic styrene-maleic amide copolymers. Fiori MC; Zheng W; Kamilar E; Simiyu G; Altenberg GA; Liang H Sci Rep; 2020 Jun; 10(1):9940. PubMed ID: 32555261 [TBL] [Abstract][Full Text] [Related]
40. A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. Long AR; O'Brien CC; Malhotra K; Schwall CT; Albert AD; Watts A; Alder NN BMC Biotechnol; 2013 May; 13():41. PubMed ID: 23663692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]