These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 33253897)
1. Detection of key sites of dimer dissociation and unfolding initiation during activation of acid-stress chaperone HdeA at low pH. Widjaja MA; Gomez JS; Benson JM; Crowhurst KA Biochim Biophys Acta Proteins Proteom; 2021 Feb; 1869(2):140576. PubMed ID: 33253897 [TBL] [Abstract][Full Text] [Related]
2. NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation. Garrison MA; Crowhurst KA Protein Sci; 2014 Feb; 23(2):167-78. PubMed ID: 24375557 [TBL] [Abstract][Full Text] [Related]
3. Multiscale modeling of a conditionally disordered pH-sensing chaperone. Ahlstrom LS; Law SM; Dickson A; Brooks CL J Mol Biol; 2015 Apr; 427(8):1670-80. PubMed ID: 25584862 [TBL] [Abstract][Full Text] [Related]
4. HdeB functions as an acid-protective chaperone in bacteria. Dahl JU; Koldewey P; Salmon L; Horowitz S; Bardwell JC; Jakob U J Biol Chem; 2015 Jan; 290(1):65-75. PubMed ID: 25391835 [TBL] [Abstract][Full Text] [Related]
6. ¹³C, ¹⁵N and ¹H backbone and side chain chemical shift assignment of acid-stress bacterial chaperone HdeA at pH 6. Crowhurst KA Biomol NMR Assign; 2014 Oct; 8(2):319-23. PubMed ID: 23835624 [TBL] [Abstract][Full Text] [Related]
7. Characterizations of the Interactions between Escherichia coli Periplasmic Chaperone HdeA and Its Native Substrates during Acid Stress. Yu XC; Yang C; Ding J; Niu X; Hu Y; Jin C Biochemistry; 2017 Oct; 56(43):5748-5757. PubMed ID: 29016106 [TBL] [Abstract][Full Text] [Related]
8. Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone. Yu XC; Hu Y; Ding J; Li H; Jin C J Biol Chem; 2019 Mar; 294(9):3192-3206. PubMed ID: 30573682 [TBL] [Abstract][Full Text] [Related]
9. Chaperone activation by unfolding. Foit L; George JS; Zhang BW; Brooks CL; Bardwell JC Proc Natl Acad Sci U S A; 2013 Apr; 110(14):E1254-62. PubMed ID: 23487787 [TBL] [Abstract][Full Text] [Related]
10. The complex role of the N-terminus and acidic residues of HdeA as pH-dependent switches in its chaperone function. Pacheco S; Widjaja MA; Gomez JS; Crowhurst KA; Abrol R Biophys Chem; 2020 Sep; 264():106406. PubMed ID: 32593908 [TBL] [Abstract][Full Text] [Related]
12. Removal of disulfide from acid stress chaperone HdeA does not wholly eliminate structure or function at low pH. Aguirre-Cardenas MI; Geddes-Buehre DH; Crowhurst KA Biochem Biophys Rep; 2021 Sep; 27():101064. PubMed ID: 34307907 [TBL] [Abstract][Full Text] [Related]
13. HdeB chaperone activity is coupled to its intrinsic dynamic properties. Ding J; Yang C; Niu X; Hu Y; Jin C Sci Rep; 2015 Nov; 5():16856. PubMed ID: 26593705 [TBL] [Abstract][Full Text] [Related]
14. Conserved amphiphilic feature is essential for periplasmic chaperone HdeA to support acid resistance in enteric bacteria. Wu YE; Hong W; Liu C; Zhang L; Chang Z Biochem J; 2008 Jun; 412(2):389-97. PubMed ID: 18271752 [TBL] [Abstract][Full Text] [Related]
15. Probing the Structure of the Escherichia coli Periplasmic Proteins HdeA and YmgD by Molecular Dynamics Simulations. Socher E; Sticht H J Phys Chem B; 2016 Nov; 120(46):11845-11855. PubMed ID: 27787971 [TBL] [Abstract][Full Text] [Related]
17. Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding. Tapley TL; Körner JL; Barge MT; Hupfeld J; Schauerte JA; Gafni A; Jakob U; Bardwell JC Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5557-62. PubMed ID: 19321422 [TBL] [Abstract][Full Text] [Related]
18. Conditional Chaperone-Client Interactions Revealed by Genetically Encoded Photo-cross-linkers. Zhang S; He D; Lin Z; Yang Y; Song H; Chen PR Acc Chem Res; 2017 May; 50(5):1184-1192. PubMed ID: 28467057 [TBL] [Abstract][Full Text] [Related]
19. Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. Hong W; Jiao W; Hu J; Zhang J; Liu C; Fu X; Shen D; Xia B; Chang Z J Biol Chem; 2005 Jul; 280(29):27029-34. PubMed ID: 15911614 [TBL] [Abstract][Full Text] [Related]
20. The Chaperone-Active State of HdeB at pH 4 Arises from Its Conformational Rearrangement and Enhanced Stability Instead of Surface Hydrophobicity. Thapliyal C; Mishra R Biochemistry; 2024 May; 63(9):1147-1161. PubMed ID: 38640496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]