BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

818 related articles for article (PubMed ID: 33253900)

  • 1. The vital role for nitric oxide in intraocular pressure homeostasis.
    Reina-Torres E; De Ieso ML; Pasquale LR; Madekurozwa M; van Batenburg-Sherwood J; Overby DR; Stamer WD
    Prog Retin Eye Res; 2021 Jul; 83():100922. PubMed ID: 33253900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and biomechanical analyses of the human healthy and glaucomatous aqueous outflow pathway: Imaging-to-modeling.
    Karimi A; Crouch DJ; Razaghi R; Crawford Downs J; Acott TS; Kelley MJ; Behnsen JG; Bosworth LA; Sheridan CM
    Comput Methods Programs Biomed; 2023 Jun; 236():107485. PubMed ID: 37149973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear stress-triggered nitric oxide release from Schlemm's canal cells.
    Ashpole NE; Overby DR; Ethier CR; Stamer WD
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):8067-76. PubMed ID: 25395486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma.
    Patel PD; Chen YL; Kasetti RB; Maddineni P; Mayhew W; Millar JC; Ellis DZ; Sonkusare SK; Zode GS
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33853948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment.
    Braunger BM; Fuchshofer R; Tamm ER
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):173-81. PubMed ID: 25957840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of Schlemm's canal endothelium and intraocular pressure reduction.
    Stamer WD; Braakman ST; Zhou EH; Ethier CR; Fredberg JJ; Overby DR; Johnson M
    Prog Retin Eye Res; 2015 Jan; 44():86-98. PubMed ID: 25223880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of the oscillatory mechanical forces in the conventional outflow pathway.
    Sherwood JM; Stamer WD; Overby DR
    J R Soc Interface; 2019 Jan; 16(150):20180652. PubMed ID: 30958169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the biomechanics of the conventional aqueous outflow pathway microstructure in the human eye.
    Karimi A; Razaghi R; Rahmati SM; Downs JC; Acott TS; Wang RK; Johnstone M
    Comput Methods Programs Biomed; 2022 Jun; 221():106922. PubMed ID: 35660940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraocular Pressure and the Mechanisms Involved in Resistance of the Aqueous Humor Flow in the Trabecular Meshwork Outflow Pathways.
    Tamm ER; Braunger BM; Fuchshofer R
    Prog Mol Biol Transl Sci; 2015; 134():301-14. PubMed ID: 26310162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ABCA1 Regulates IOP by Modulating Cav1/eNOS/NO Signaling Pathway.
    Hu C; Niu L; Li L; Song M; Zhang Y; Lei Y; Chen Y; Sun X
    Invest Ophthalmol Vis Sci; 2020 May; 61(5):33. PubMed ID: 32428234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ITGA8 positive cells in the conventional outflow tissue exhibit Schlemm's canal endothelial cell properties.
    Wang Y; Wang W; Yang X; Chen W; Yang X; Pan X; Xu P; Zhu W; Han Y; Chen X
    Life Sci; 2021 Aug; 278():119564. PubMed ID: 33961857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing an experimental-computational workflow to study the biomechanics of the human conventional aqueous outflow pathway.
    Karimi A; Khan S; Razaghi R; Rahmati SM; Gathara M; Tudisco E; Aga M; Kelley MJ; Jian Y; Acott TS
    Acta Biomater; 2023 Jul; 164():346-362. PubMed ID: 37072067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma.
    Rao PV
    J Ocul Pharmacol Ther; 2014; 30(2-3):181-90. PubMed ID: 24283588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmental biomechanics of the normal and glaucomatous human aqueous outflow pathway.
    Karimi A; Khan S; Razaghi R; Aga M; Rahmati SM; White E; Kelley MJ; Jian Y; Acott TS
    Acta Biomater; 2024 Jan; 173():148-166. PubMed ID: 37944773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research.
    Rao PV; Pattabiraman PP; Kopczynski C
    Exp Eye Res; 2017 May; 158():23-32. PubMed ID: 27593914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Factors Affecting the Stability of IOP Homeostasis.
    Overby DR; Ethier CR; Miao C; Kelly RA; Reina-Torres E; Stamer WD
    Invest Ophthalmol Vis Sci; 2024 Jun; 65(6):4. PubMed ID: 38833261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of nitric oxide in murine conventional outflow physiology.
    Chang JY; Stamer WD; Bertrand J; Read AT; Marando CM; Ethier CR; Overby DR
    Am J Physiol Cell Physiol; 2015 Aug; 309(4):C205-14. PubMed ID: 26040898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide (NO): an emerging target for the treatment of glaucoma.
    Cavet ME; Vittitow JL; Impagnatiello F; Ongini E; Bastia E
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(8):5005-15. PubMed ID: 25125670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraocular pressure regulation: findings of pulse-dependent trabecular meshwork motion lead to unifying concepts of intraocular pressure homeostasis.
    Johnstone MA
    J Ocul Pharmacol Ther; 2014; 30(2-3):88-93. PubMed ID: 24359130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanylate cyclase activators, cell volume changes and IOP reduction.
    Ellis DZ
    Cell Physiol Biochem; 2011; 28(6):1145-54. PubMed ID: 22179003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.