These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33254015)

  • 1. ENNAACT is a novel tool which employs neural networks for anticancer activity classification for therapeutic peptides.
    Timmons PB; Hewage CM
    Biomed Pharmacother; 2021 Jan; 133():111051. PubMed ID: 33254015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides.
    Timmons PB; Hewage CM
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks.
    Timmons PB; Hewage CM
    Sci Rep; 2020 Jul; 10(1):10869. PubMed ID: 32616760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information.
    Sun M; Yang S; Hu X; Zhou Y
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico design and optimization of selective membranolytic anticancer peptides.
    Gabernet G; Gautschi D; Müller AT; Neuhaus CS; Armbrecht L; Dittrich PS; Hiss JA; Schneider G
    Sci Rep; 2019 Aug; 9(1):11282. PubMed ID: 31375699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides.
    Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A
    Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticancer peptides prediction with deep representation learning features.
    Lv Z; Cui F; Zou Q; Zhang L; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AntiCP 2.0: an updated model for predicting anticancer peptides.
    Agrawal P; Bhagat D; Mahalwal M; Sharma N; Raghava GPS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32770192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing Anticancer Peptides by Constructive Machine Learning.
    Grisoni F; Neuhaus CS; Gabernet G; Müller AT; Hiss JA; Schneider G
    ChemMedChem; 2018 Jul; 13(13):1300-1302. PubMed ID: 29679519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Molecules; 2019 May; 24(10):. PubMed ID: 31121946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrastive learning for enhancing feature extraction in anticancer peptides.
    Lee B; Shin D
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38725157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides.
    Zhao Y; Wang S; Fei W; Feng Y; Shen L; Yang X; Wang M; Wu M
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides.
    Boopathi V; Subramaniyam S; Malik A; Lee G; Manavalan B; Yang DC
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short Fragmented Peptides from
    Wong YH; Lee SH
    Curr Drug Discov Technol; 2024; 21(6):e220224227304. PubMed ID: 38409702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. APPTEST is a novel protocol for the automatic prediction of peptide tertiary structures.
    Timmons PB; Hewage CM
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34396417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction.
    Tan X; Yu Y; Duan K; Zhang J; Sun P; Sun H
    Curr Top Med Chem; 2020; 20(21):1858-1867. PubMed ID: 32648840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepACP: A Novel Computational Approach for Accurate Identification of Anticancer Peptides by Deep Learning Algorithm.
    Yu L; Jing R; Liu F; Luo J; Li Y
    Mol Ther Nucleic Acids; 2020 Dec; 22():862-870. PubMed ID: 33230481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating In Silico and In Vitro Approaches to Identify Natural Peptides with Selective Cytotoxicity against Cancer Cells.
    Kao HJ; Weng TH; Chen CH; Chen YC; Chi YH; Huang KY; Weng SL
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 38999958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACP-CapsPred: an explainable computational framework for identification and functional prediction of anticancer peptides based on capsule network.
    Yao L; Xie P; Guan J; Chung CR; Zhang W; Deng J; Huang Y; Chiang YC; Lee TY
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39293807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico Design of Anticancer Peptides.
    Kumar S; Li H
    Methods Mol Biol; 2017; 1647():245-254. PubMed ID: 28809008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.