These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33254015)

  • 21. LGBM-ACp: an ensemble model for anticancer peptide prediction and in silico screening with potential drug targets.
    Garai S; Thomas J; Dey P; Das D
    Mol Divers; 2024 Aug; 28(4):1965-1981. PubMed ID: 36637711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. iACP-MultiCNN: Multi-channel CNN based anticancer peptides identification.
    Aziz AZB; Hasan MAM; Ahmad S; Mamun MA; Shin J; Hossain MR
    Anal Biochem; 2022 Aug; 650():114707. PubMed ID: 35568159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effective identification and differential analysis of anticancer peptides.
    Zhang L; Hu X; Xiao K; Kong L
    Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ACPred-BMF: bidirectional LSTM with multiple feature representations for explainable anticancer peptide prediction.
    Han B; Zhao N; Zeng C; Mu Z; Gong X
    Sci Rep; 2022 Dec; 12(1):21915. PubMed ID: 36535969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery.
    Wu Q; Ke H; Li D; Wang Q; Fang J; Zhou J
    Curr Top Med Chem; 2019; 19(1):4-16. PubMed ID: 30674262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties.
    Huang KY; Tseng YJ; Kao HJ; Chen CH; Yang HH; Weng SL
    Sci Rep; 2021 Jun; 11(1):13594. PubMed ID: 34193950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo design of anticancer peptides by ensemble artificial neural networks.
    Grisoni F; Neuhaus CS; Hishinuma M; Gabernet G; Hiss JA; Kotera M; Schneider G
    J Mol Model; 2019 Apr; 25(5):112. PubMed ID: 30953170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Advances in Computational Methods for Identifying Anticancer Peptides.
    Feng P; Wang Z
    Curr Drug Targets; 2019; 20(5):481-487. PubMed ID: 30068270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs.
    Huang Y; Feng Q; Yan Q; Hao X; Chen Y
    Mini Rev Med Chem; 2015; 15(1):73-81. PubMed ID: 25382016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advancing Peptide-Based Cancer Therapy with AI: In-Depth Analysis of State-of-the-Art AI Models.
    Bhattarai S; Tayara H; Chong KT
    J Chem Inf Model; 2024 Jul; 64(13):4941-4957. PubMed ID: 38874445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides.
    Rao B; Zhou C; Zhang G; Su R; Wei L
    Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. xDeep-AcPEP: Deep Learning Method for Anticancer Peptide Activity Prediction Based on Convolutional Neural Network and Multitask Learning.
    Chen J; Cheong HH; Siu SWI
    J Chem Inf Model; 2021 Aug; 61(8):3789-3803. PubMed ID: 34327990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. THPep: A machine learning-based approach for predicting tumor homing peptides.
    Shoombuatong W; Schaduangrat N; Pratiwi R; Nantasenamat C
    Comput Biol Chem; 2019 Jun; 80():441-451. PubMed ID: 31151025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico models for designing and discovering novel anticancer peptides.
    Tyagi A; Kapoor P; Kumar R; Chaudhary K; Gautam A; Raghava GP
    Sci Rep; 2013 Oct; 3():2984. PubMed ID: 24136089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Survey of In-silico Prediction of Anticancer Peptides.
    Ye N
    Curr Top Med Chem; 2021; 21(15):1310-1318. PubMed ID: 34126901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of anti-inflammatory proteins/peptides: an insilico approach.
    Gupta S; Sharma AK; Shastri V; Madhu MK; Sharma VK
    J Transl Med; 2017 Jan; 15(1):7. PubMed ID: 28057002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ACP-ESM2: The prediction of anticancer peptides based on pre-trained classifier.
    Song H; Lin X; Zhang H; Yin H
    Comput Biol Chem; 2024 Jun; 110():108091. PubMed ID: 38735271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PeptiDesCalculator: Software for computation of peptide descriptors. Definition, implementation and case studies for 9 bioactivity endpoints.
    Barigye SJ; Gómez-Ganau S; Serrano-Candelas E; Gozalbes R
    Proteins; 2021 Feb; 89(2):174-184. PubMed ID: 32881068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation.
    Zhou XR; Zhang Q; Tian XB; Cao YM; Liu ZQ; Fan R; Ding XF; Zhu Z; Chen L; Luo SZ
    Biochim Biophys Acta; 2016 Aug; 1858(8):1914-25. PubMed ID: 27207743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.