These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33254159)

  • 1. Adaptive latent state modeling of brain network dynamics with real-time learning rate optimization.
    Yang Y; Ahmadipour P; Shanechi MM
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33254159
    [No Abstract]   [Full Text] [Related]  

  • 2. Designing and validating a robust adaptive neuromodulation algorithm for closed-loop control of brain states.
    Fang H; Yang Y
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35576912
    [No Abstract]   [Full Text] [Related]  

  • 3. Optimizing the learning rate for adaptive estimation of neural encoding models.
    Hsieh HL; Shanechi MM
    PLoS Comput Biol; 2018 May; 14(5):e1006168. PubMed ID: 29813069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal subspace identification for modeling discrete-continuous spiking and field potential population activity.
    Ahmadipour P; Sani OG; Pesaran B; Shanechi MM
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38016450
    [No Abstract]   [Full Text] [Related]  

  • 5. Dynamic tracking of non-stationarity in human ECoG activity.
    Yuxiao Yang ; Chang EF; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1660-1663. PubMed ID: 29060203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive tracking of human ECoG network dynamics.
    Ahmadipour P; Yang Y; Chang EF; Shanechi MM
    J Neural Eng; 2021 Feb; 18(1):016011. PubMed ID: 33624610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal calibration of the learning rate in closed-loop adaptive brain-machine interfaces.
    Hsieh HL; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1667-70. PubMed ID: 26736596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and inference methods for switching regime-dependent dynamical systems with multiscale neural observations.
    Song CY; Hsieh HL; Pesaran B; Shanechi MM
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36261030
    [No Abstract]   [Full Text] [Related]  

  • 9. Dynamic network modeling and dimensionality reduction for human ECoG activity.
    Yang Y; Sani OG; Chang EF; Shanechi MM
    J Neural Eng; 2019 Aug; 16(5):056014. PubMed ID: 31096206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity.
    Hu S; Zhang Q; Wang J; Chen Z
    J Neurophysiol; 2018 Apr; 119(4):1394-1410. PubMed ID: 29357468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Robust and Adaptive Control Algorithm for Closed-Loop Brain Stimulation.
    Fang H; Yang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6049-6052. PubMed ID: 34892496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A generalizable adaptive brain-machine interface design for control of anesthesia.
    Yuxiao Yang ; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1099-102. PubMed ID: 26736457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale modeling and decoding algorithms for spike-field activity.
    Hsieh HL; Wong YT; Pesaran B; Shanechi MM
    J Neural Eng; 2019 Feb; 16(1):016018. PubMed ID: 30523833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unsupervised learning algorithm for multiscale neural activity.
    Abbaspourazad H; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():201-204. PubMed ID: 29059845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kernel Reinforcement Learning-Assisted Adaptive Decoder Facilitates Stable and Continuous Brain Control Tasks.
    Zhang X; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4125-4134. PubMed ID: 37792657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A framework for identification of brain network dynamics using a novel binary noise modulated electrical stimulation pattern.
    Yang Y; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2087-90. PubMed ID: 26736699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling time-varying brain networks with a self-tuning optimized Kalman filter.
    Pascucci D; Rubega M; Plomp G
    PLoS Comput Biol; 2020 Aug; 16(8):e1007566. PubMed ID: 32804971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching state-space modeling of neural signal dynamics.
    He M; Das P; Hotan G; Purdon PL
    PLoS Comput Biol; 2023 Aug; 19(8):e1011395. PubMed ID: 37639391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation.
    Yang Y; Connolly AT; Shanechi MM
    J Neural Eng; 2018 Dec; 15(6):066007. PubMed ID: 30221624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.