These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33254444)

  • 41. Machine learning prediction of nitrogen heterocycles in bio-oil produced from hydrothermal liquefaction of biomass.
    Leng L; Zhang W; Chen Q; Zhou J; Peng H; Zhan H; Li H
    Bioresour Technol; 2022 Oct; 362():127791. PubMed ID: 35985462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of aqueous phase recirculation on product yields and quality from hydrothermal liquefaction of rice straw.
    Harisankar S; Francis Prashanth P; Nallasivam J; Vishnu Mohan R; Vinu R
    Bioresour Technol; 2021 Dec; 342():125951. PubMed ID: 34852437
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction.
    Cao L; Zhang C; Hao S; Luo G; Zhang S; Chen J
    Bioresour Technol; 2016 Nov; 220():471-478. PubMed ID: 27611031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass.
    Leng L; Li J; Yuan X; Li J; Han P; Hong Y; Wei F; Zhou W
    Bioresour Technol; 2018 Mar; 251():49-56. PubMed ID: 29268150
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic hydrothermal liquefaction of water hyacinth.
    Singh R; Balagurumurthy B; Prakash A; Bhaskar T
    Bioresour Technol; 2015 Feb; 178():157-165. PubMed ID: 25240515
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrothermal liquefaction of Scenedesmus obliquus using a novel catalyst derived from clam shells: Solid residue as catalyst for hydrogen production.
    Arun J; Gopinath KP; SundarRajan P; Malolan R; Adithya S; Sai Jayaraman R; Srinivaasan Ajay P
    Bioresour Technol; 2020 Aug; 310():123443. PubMed ID: 32353767
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of catalyst and solvent on the hydrothermal liquefaction of woody biomass.
    Zhou X; Zhao J; Chen M; Zhao G; Wu S
    Bioresour Technol; 2022 Feb; 346():126354. PubMed ID: 34798249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of an innovative SF/NZVI catalyst and investigation of its effectiveness on bio-oil production in liquefaction process alongside other parameters.
    Ersöz K; Bayrak B; Gündüz F; Karaca H
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):27913-27934. PubMed ID: 38523213
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Liquid fuel generation from algal biomass via a two-step process: effect of feedstocks.
    Xu YP; Duan PG; Wang F; Guan QQ
    Biotechnol Biofuels; 2018; 11():83. PubMed ID: 29619079
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Uncovering the transition between hydrothermal carbonization and liquefaction via secondary char extraction: A case study using food waste.
    Pecchi M; Baratieri M; Maag AR; Goldfarb JL
    Waste Manag; 2023 Aug; 168():281-289. PubMed ID: 37329834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergistic hydrothermal liquefaction of wheat stalk with homogeneous and heterogeneous catalyst at low temperature.
    Chen Y; Cao X; Zhu S; Tian F; Xu Y; Zhu C; Dong L
    Bioresour Technol; 2019 Apr; 278():92-98. PubMed ID: 30684728
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils.
    Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y
    Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microalgae hydrothermal liquefaction and derived biocrude upgrading with modified SBA-15 catalysts.
    Li J; Fang X; Bian J; Guo Y; Li C
    Bioresour Technol; 2018 Oct; 266():541-547. PubMed ID: 30015249
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrothermal liquefaction of Scenedesmus abundans biomass spent for sorption of petroleum residues from wastewater and studies on recycling of post hydrothermal liquefaction wastewater.
    Sundar Rajan P; Gopinath KP; Arun J; Grace Pavithra K
    Bioresour Technol; 2019 Jul; 283():36-44. PubMed ID: 30901586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stabilization of acid-rich bio-oil by catalytic mild hydrotreating.
    Choi W; Jo H; Choi JW; Suh DJ; Lee H; Kim C; Kim KH; Lee KY; Ha JM
    Environ Pollut; 2021 Mar; 272():116180. PubMed ID: 33445152
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production.
    Xu Y; Hu Y; Peng Y; Yao L; Dong Y; Yang B; Song R
    Bioresour Technol; 2020 Mar; 300():122665. PubMed ID: 31918303
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Progress in thermochemical conversion of duckweed and upgrading of the bio-oil: A critical review.
    Djandja OS; Yin L; Wang Z; Guo Y; Zhang X; Duan P
    Sci Total Environ; 2021 May; 769():144660. PubMed ID: 33736270
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of Mannich reaction during co-liquefaction of microalgae and sweet potato waste: Combustion performance of bio-oil and bio-char.
    Chen X; Peng X; Ma X
    Bioresour Technol; 2020 Dec; 317():123993. PubMed ID: 32799088
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae.
    Duan P; Wang B; Xu Y
    Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catalytic hydrothermal deoxygenation of sugarcane bagasse for energy dense bio-oil and aqueous fraction acidogenesis for biohydrogen production.
    Kopperi H; Venkata Mohan S
    Bioresour Technol; 2023 Jul; 379():128954. PubMed ID: 36963697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.