These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33254458)
1. Influence of initial uncontrolled pH on acidogenic fermentation of brewery spent grains to biohydrogen and volatile fatty acids production: Optimization and scale-up. Sarkar O; Rova U; Christakopoulos P; Matsakas L Bioresour Technol; 2021 Jan; 319():124233. PubMed ID: 33254458 [TBL] [Abstract][Full Text] [Related]
2. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Dahiya S; Sarkar O; Swamy YV; Venkata Mohan S Bioresour Technol; 2015 Apr; 182():103-113. PubMed ID: 25682230 [TBL] [Abstract][Full Text] [Related]
3. Synergy of anoxic microenvironment and facultative anaerobes on acidogenic metabolism in a self-induced electrofermentation system. Sarkar O; Venkata Mohan S Bioresour Technol; 2020 Oct; 313():123604. PubMed ID: 32540693 [TBL] [Abstract][Full Text] [Related]
4. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane. Sarkar O; Venkata Mohan S Bioresour Technol; 2017 Oct; 242():68-76. PubMed ID: 28583405 [TBL] [Abstract][Full Text] [Related]
5. Critical factors influence on acidogenesis towards volatile fatty acid, biohydrogen and methane production from the molasses-spent wash. Vanitha TK; Dahiya S; Lingam Y; Venkata Mohan S Bioresour Technol; 2022 Sep; 360():127446. PubMed ID: 35690240 [TBL] [Abstract][Full Text] [Related]
6. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste. Slezak R; Grzelak J; Krzystek L; Ledakowicz S Environ Technol; 2021 Nov; 42(27):4269-4278. PubMed ID: 32255721 [TBL] [Abstract][Full Text] [Related]
7. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
8. Ultrasound-controlled acidogenic valorization of wastewater for biohydrogen and volatile fatty acids production: Microbial community profiling. Sarkar O; Matsakas L; Rova U; Christakopoulos P iScience; 2023 Apr; 26(4):106519. PubMed ID: 37102152 [TBL] [Abstract][Full Text] [Related]
9. Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Pasupuleti SB; Venkata Mohan S Bioresour Technol; 2015; 189():177-185. PubMed ID: 25889805 [TBL] [Abstract][Full Text] [Related]
10. Green Hydrogen-Compressed natural gas (bio-H-CNG) production from food waste: Organic load influence on hydrogen and methane fusion. Santhosh J; Sarkar O; Venkata Mohan S Bioresour Technol; 2021 Nov; 340():125643. PubMed ID: 34375791 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the acidogenic and methanogenic potential of agroindustrial residues. Perimenis A; Nicolay T; Leclercq M; Gerin PA Waste Manag; 2018 Feb; 72():178-185. PubMed ID: 29239737 [TBL] [Abstract][Full Text] [Related]
12. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH. Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546 [TBL] [Abstract][Full Text] [Related]
13. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. Zhang L; Loh KC; Dai Y; Tong YW Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405 [TBL] [Abstract][Full Text] [Related]
14. Continuous acidogenic fermentation: Narrowing the gap between laboratory testing and industrial application. Garcia-Aguirre J; Esteban-Gutiérrez M; Irizar I; González-Mtnez de Goñi J; Aymerich E Bioresour Technol; 2019 Jun; 282():407-416. PubMed ID: 30884461 [TBL] [Abstract][Full Text] [Related]
15. Synergy of selective buffering, intermittent pH control and bioreactor configuration on acidogenic volatile fatty acid production from food waste. Dahiya S; Venkata Mohan S Chemosphere; 2022 Sep; 302():134755. PubMed ID: 35490753 [TBL] [Abstract][Full Text] [Related]
16. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Zhou M; Yan B; Wong JWC; Zhang Y Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950 [TBL] [Abstract][Full Text] [Related]
17. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Cai M; Liu J; Wei Y Environ Sci Technol; 2004 Jun; 38(11):3195-202. PubMed ID: 15224755 [TBL] [Abstract][Full Text] [Related]
18. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Lu Y; Zhang Q; Wang X; Zhou X; Zhu J Bioresour Technol; 2020 Nov; 316():123851. PubMed ID: 32738559 [TBL] [Abstract][Full Text] [Related]
19. A novel process for volatile fatty acids production from syngas by integrating with mesophilic alkaline fermentation of waste activated sludge. Rao Y; Wan J; Liu Y; Angelidaki I; Zhang S; Zhang Y; Luo G Water Res; 2018 Aug; 139():372-380. PubMed ID: 29665509 [TBL] [Abstract][Full Text] [Related]
20. Valorization of agro-industrial wastes to produce volatile fatty acids: combined effect of substrate/inoculum ratio and initial alkalinity. Iglesias-Iglesias R; Fernandez-Feal MMDC; Kennes C; Veiga MC Environ Technol; 2021 Nov; 42(25):3889-3899. PubMed ID: 32167848 [No Abstract] [Full Text] [Related] [Next] [New Search]