These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33254604)

  • 21. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed.
    Oldenburg E; Höppner F; Ellner F; Weinert J
    Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids.
    Ferruz E; Loran S; Herrera M; Gimenez I; Bervis N; Barcena C; Carramiñana JJ; Juan T; Herrera A; Ariño A
    J Food Prot; 2016 Oct; 79(10):1753-1758. PubMed ID: 28221840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Occurrence of Fusarium mycotoxins in Italian cereal and cereal products from organic farming.
    Juan C; Ritieni A; Mañes J
    Food Chem; 2013 Dec; 141(3):1747-55. PubMed ID: 23870887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fate of Fusarium mycotoxins during processing of Nigerian traditional infant foods (ogi and soybean powder).
    Chilaka CA; De Boevre M; Atanda OO; De Saeger S
    Food Res Int; 2019 Feb; 116():408-418. PubMed ID: 30716963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of processing on Fusarium mycotoxins.
    Jackson LS; Bullerman LB
    Adv Exp Med Biol; 1999; 459():243-61. PubMed ID: 10335380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mycotoxin Production in
    Munkvold GP; Proctor RH; Moretti A
    Annu Rev Phytopathol; 2021 Aug; 59():373-402. PubMed ID: 34077240
    [No Abstract]   [Full Text] [Related]  

  • 27.
    Ekwomadu TI; Akinola SA; Mwanza M
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical and biological approaches for mycotoxin control: a review.
    Edlayne G; Simone A; Felicio JD
    Recent Pat Food Nutr Agric; 2009 Jun; 1(2):155-61. PubMed ID: 20653536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy.
    Beccari G; Senatore MT; Tini F; Sulyok M; Covarelli L
    Int J Food Microbiol; 2018 May; 273():33-42. PubMed ID: 29574332
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Qu Z; Ren X; Du Z; Hou J; Li Y; Yao Y; An Y
    mLife; 2024 Jun; 3(2):176-206. PubMed ID: 38948146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering Alternaria metabolic responses in microbial confrontation via an integrated mass spectrometric targeted and non-targeted strategy.
    Tian Y; Abdallah MF; De Boevre M; Audenaert K; Wang C; De Saeger S; Wu A
    Food Chem; 2023 Mar; 404(Pt B):134694. PubMed ID: 36323034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The arbuscular mycorrhizal fungus, Glomus irregulare, controls the mycotoxin production of Fusarium sambucinum in the pathogenesis of potato.
    Ismail Y; McCormick S; Hijri M
    FEMS Microbiol Lett; 2013 Nov; 348(1):46-51. PubMed ID: 23964970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.
    Naef A; Zesiger T; Défago G
    J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mycotoxin profile of Fusarium langsethiae isolated from wheat in Italy: production of type-A trichothecenes and relevant glucosyl derivatives.
    Lattanzio VM; Ciasca B; Haidukowski M; Infantino A; Visconti A; Pascale M
    J Mass Spectrom; 2013 Dec; 48(12):1291-8. PubMed ID: 24338884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mycotoxins produced by Fusarium proliferatum and F. pseudonygamai on maize, sorghum and pearl millet grains in vitro.
    Vismer HF; Shephard GS; van der Westhuizen L; Mngqawa P; Bushula-Njah V; Leslie JF
    Int J Food Microbiol; 2019 May; 296():31-36. PubMed ID: 30826540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina.
    Chulze SN; Palazzini JM; Torres AM; Barros G; Ponsone ML; Geisen R; Schmidt-Heydt M; Köhl J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):471-9. PubMed ID: 25427716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mould incidence and mycotoxin contamination in freshly harvested maize kernels originated from India.
    Mudili V; Siddaih CN; Nagesh M; Garapati P; Naveen Kumar K; Murali HS; Yli Mattila T; Batra HV
    J Sci Food Agric; 2014 Oct; 94(13):2674-83. PubMed ID: 24609945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mycotoxins and toxigenic fungi on cereal grains in western Canada.
    Mills JT
    Can J Physiol Pharmacol; 1990 Jul; 68(7):982-6. PubMed ID: 2200591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mycotoxins at the Start of the Food Chain in Costa Rica: Analysis of Six
    Molina A; Chavarría G; Alfaro-Cascante M; Leiva A; Granados-Chinchilla F
    Toxins (Basel); 2019 May; 11(6):. PubMed ID: 31159287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation.
    Awad WA; Ghareeb K; Bohm J; Zentek J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Apr; 27(4):510-20. PubMed ID: 20234966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.