BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33254608)

  • 21. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis.
    Xie Y; Chen TB; Lei M; Yang J; Guo QJ; Song B; Zhou XY
    Chemosphere; 2011 Jan; 82(3):468-76. PubMed ID: 20970158
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GIS interpolation is key in assessing spatial and temporal bioremediation of groundwater arsenic contamination.
    Fischer A; Lee MK; Ojeda AS; Rogers SR
    J Environ Manage; 2021 Feb; 280():111683. PubMed ID: 33246756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial prediction and influencing factors identification of potential toxic element contamination in soil of different karst landform regions using integration model.
    Zhang B; Hou H; Liu L; Huang Z; Zhao L
    Chemosphere; 2023 Jun; 327():138404. PubMed ID: 36931406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of Soil Heavy Metal Distribution Using Geographically Weighted Regression Kriging.
    Fu P; Yang Y; Zou Y
    Bull Environ Contam Toxicol; 2022 Feb; 108(2):344-350. PubMed ID: 34741183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale.
    Song YQ; Zhao X; Su HY; Li B; Hu YM; Cui XS
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface modeling of soil antibiotics.
    Shi WJ; Yue TX; Du ZP; Wang Z; Li XW
    Sci Total Environ; 2016 Feb; 543(Pt A):609-619. PubMed ID: 26613514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Method for establishing soil contaminant discharge inventory: An arsenic-contaminated site case study.
    Xue W; Ying D; Li Y; Sheng Y; He T; Shi P; Liu M; Zhao L
    Environ Res; 2023 Jun; 227():115700. PubMed ID: 36931375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of spatial prediction and sampling strategy of site contamination based on Thiessen polygon coupling interpolation.
    Liu X; Zheng L; Li Z; Liu F; Obin N
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78959-78972. PubMed ID: 37278892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field.
    Jia X; Cao Y; O'Connor D; Zhu J; Tsang DCW; Zou B; Hou D
    Environ Pollut; 2021 Feb; 270():116281. PubMed ID: 33348140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of forest canopy closure in northwest Yunnan based on multi-source remote sensing data colla-boration.
    Zhou WW; Shu QT; Wang SW; Yang ZD; Luo SL; Xu L; Xiao JN
    Ying Yong Sheng Tai Xue Bao; 2023 Jul; 34(7):1806-1816. PubMed ID: 37694464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Soil Pollution Characteristics and Ecological Risk Assessment of As at a Large-scale Arsenic Slag-contaminated Site].
    Liu G; Shi Y; Tian HJ; Li H; Zhang L; Niu JJ; Guo GL; Zhang C
    Huan Jing Ke Xue; 2018 Dec; 39(12):5639-5646. PubMed ID: 30628410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heavy Metal and Metalloid Contamination Assessments of Soil around an Abandoned Uranium Tailings Pond and the Contaminations' Spatial Distribution and Variability.
    Wang WH; Luo XG; Wang Z; Zeng Y; Wu FQ; Li ZX
    Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30380681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial prediction of soil organic carbon stocks in an arid rangeland using machine learning algorithms.
    Rostaminia M; Rahmani A; Mousavi SR; Taghizadeh-Mehrjardi R; Maghsodi Z
    Environ Monit Assess; 2021 Nov; 193(12):815. PubMed ID: 34787728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Comparison of various spatial interpolation methods for non-stationary regional soil mercury content].
    Hu KL; Li BG; Lu YZ; Zhang FR
    Huan Jing Ke Xue; 2004 May; 25(3):132-7. PubMed ID: 15327270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A remote sensing-based strategy for mapping potentially toxic elements of soils: Temporal-spatial-spectral covariates combined with random forest.
    Xu X; Wang Z; Song X; Zhan W; Yang S
    Environ Res; 2024 Jan; 240(Pt 1):117570. PubMed ID: 37939802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping soil arsenic pollution at a brownfield site using satellite hyperspectral imagery and machine learning.
    Jia X; Hou D
    Sci Total Environ; 2023 Jan; 857(Pt 2):159387. PubMed ID: 36240926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Prediction of soil nutrients spatial distribution based on neural network model combined with goestatistics].
    Li QQ; Wang CQ; Zhang WJ; Yu Y; Li B; Yang J; Bai GC; Cai Y
    Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):459-66. PubMed ID: 23705392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial Distribution of Heavy Metals and the Environmental Quality of Soil in the Northern Plateau of Spain by Geostatistical Methods.
    Santos-Francés F; Martínez-Graña A; Zarza CÁ; Sánchez AG; Rojo PA
    Int J Environ Res Public Health; 2017 May; 14(6):. PubMed ID: 28587142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of Ordinary Kriging and Inverse Distance Weighting Methods for Modeling Chromium and Cadmium Soil Pollution in E-Waste Sites in Douala, Cameroon.
    Ouabo RE; Sangodoyin AY; Ogundiran MB
    J Health Pollut; 2020 Jun; 10(26):200605. PubMed ID: 32509406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.