These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 33254737)

  • 61. Impacts of plastic products used in daily life on the environment and human health: What is known?
    Rodrigues MO; Abrantes N; Gonçalves FJM; Nogueira H; Marques JC; Gonçalves AMM
    Environ Toxicol Pharmacol; 2019 Nov; 72():103239. PubMed ID: 31472322
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Recycling of plastic waste: Screening for brominated flame retardants (BFRs).
    Pivnenko K; Granby K; Eriksson E; Astrup TF
    Waste Manag; 2017 Nov; 69():101-109. PubMed ID: 28869101
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals.
    Li Q; Liu J; Gadd GM
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):8999-9008. PubMed ID: 32940735
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biodegradability of plastics.
    Tokiwa Y; Calabia BP; Ugwu CU; Aiba S
    Int J Mol Sci; 2009 Aug; 10(9):3722-3742. PubMed ID: 19865515
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization.
    Nikolaivits E; Pantelic B; Azeem M; Taxeidis G; Babu R; Topakas E; Brennan Fournet M; Nikodinovic-Runic J
    Front Bioeng Biotechnol; 2021; 9():696040. PubMed ID: 34239864
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Advances in research on petroleum biodegradability in soil.
    Wang S; Wang D; Yu Z; Dong X; Liu S; Cui H; Sun B
    Environ Sci Process Impacts; 2021 Feb; 23(1):9-27. PubMed ID: 33393551
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fungal Enzymes as Catalytic Tools for Polyethylene Terephthalate (PET) Degradation.
    Ahmaditabatabaei S; Kyazze G; Iqbal HMN; Keshavarz T
    J Fungi (Basel); 2021 Nov; 7(11):. PubMed ID: 34829219
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biological degradation of plastics: a comprehensive review.
    Shah AA; Hasan F; Hameed A; Ahmed S
    Biotechnol Adv; 2008; 26(3):246-65. PubMed ID: 18337047
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Toward Microbial Recycling and Upcycling of Plastics: Prospects and Challenges.
    Verschoor JA; Kusumawardhani H; Ram AFJ; de Winde JH
    Front Microbiol; 2022; 13():821629. PubMed ID: 35401461
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review.
    Dos Santos JJ; Maranho LT
    J Environ Manage; 2018 Mar; 210():104-113. PubMed ID: 29331851
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Plastic additives: challenges in ecotox hazard assessment.
    Barrick A; Champeau O; Chatel A; Manier N; Northcott G; Tremblay LA
    PeerJ; 2021; 9():e11300. PubMed ID: 33959427
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Insights into environmental bioremediation by microorganisms through functional genomics and proteomics.
    Zhao B; Poh CL
    Proteomics; 2008 Feb; 8(4):874-81. PubMed ID: 18210372
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Degradation of plastics and plastic-degrading bacteria in cold marine habitats.
    Urbanek AK; Rymowicz W; Mirończuk AM
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7669-7678. PubMed ID: 29992436
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Challenges with Verifying Microbial Degradation of Polyethylene.
    Montazer Z; Habibi Najafi MB; Levin DB
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31948075
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Release of micro- and nanoparticles from biodegradable plastic during in situ composting.
    Sintim HY; Bary AI; Hayes DG; English ME; Schaeffer SM; Miles CA; Zelenyuk A; Suski K; Flury M
    Sci Total Environ; 2019 Jul; 675():686-693. PubMed ID: 31039503
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chemical characteristics and toxicological effects of leachates from plastics under simulated seawater and fish digest.
    Qiu SQ; Huang GY; Fang GZ; Li XP; Lei DQ; Shi WJ; Xie L; Ying GG
    Water Res; 2022 Feb; 209():117892. PubMed ID: 34861434
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fungal bioremediation of polyethylene: Challenges and perspectives.
    Cowan AR; Costanzo CM; Benham R; Loveridge EJ; Moody SC
    J Appl Microbiol; 2022 Jan; 132(1):78-89. PubMed ID: 34218487
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In Vivo Accumulation of Plastic-Derived Chemicals into Seabird Tissues.
    Tanaka K; Watanuki Y; Takada H; Ishizuka M; Yamashita R; Kazama M; Hiki N; Kashiwada F; Mizukawa K; Mizukawa H; Hyrenbach D; Hester M; Ikenaka Y; Nakayama SMM
    Curr Biol; 2020 Feb; 30(4):723-728.e3. PubMed ID: 32008901
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills.
    Nikolopoulou M; Pasadakis N; Kalogerakis N
    Mar Pollut Bull; 2013 Jul; 72(1):165-73. PubMed ID: 23660443
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Release kinetics as a key linkage between the occurrence of flame retardants in microplastics and their risk to the environment and ecosystem: A critical review.
    Cheng H; Luo H; Hu Y; Tao S
    Water Res; 2020 Oct; 185():116253. PubMed ID: 32768659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.