These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33254747)

  • 1. Characterization of heavy metals in textile sludge with hydrothermal carbonization treatment.
    Zhang X; Zhou J; Xu Z; Zhu P; Liu J
    J Hazard Mater; 2021 Jan; 402():123635. PubMed ID: 33254747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and transformation behaviors of heavy metals and phosphorus during hydrothermal carbonization of sewage sludge.
    Wang H; Yang Z; Li X; Liu Y
    Environ Sci Pollut Res Int; 2020 May; 27(14):17109-17122. PubMed ID: 32146677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Migration and Transformation of Heavy Metals in Sewage Sludge during Hydrothermal Carbonization Combined with Combustion.
    Liu M; Duan Y; Bikane K; Zhao L
    Biomed Res Int; 2018; 2018():1913848. PubMed ID: 30050921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.
    Liu T; Liu Z; Zheng Q; Lang Q; Xia Y; Peng N; Gai C
    Bioresour Technol; 2018 Jan; 247():282-290. PubMed ID: 28950137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of urban sludge by hydrothermal carbonization.
    Xu X; Jiang E
    Bioresour Technol; 2017 Aug; 238():182-187. PubMed ID: 28433906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobilities and leachabilities of heavy metals in sludge with humus soil.
    Zhu R; Wu M; Yang J
    J Environ Sci (China); 2011; 23(2):247-54. PubMed ID: 21516998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of heavy metals and oil components in the products of oily sludge after hydrothermal treatment.
    Duan Y; Gao N; Sipra AT; Tong K; Quan C
    J Hazard Mater; 2022 Feb; 424(Pt A):127293. PubMed ID: 34600372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils.
    Toribio M; Romanyà J
    Sci Total Environ; 2006 Jun; 363(1-3):11-21. PubMed ID: 16316678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity assessment of a dye industry treatment sludge.
    Celebi S; Kendir S
    Waste Manag Res; 2002 Dec; 20(6):541-5. PubMed ID: 12549666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Migration and transformation rule of heavy metals in sludge during hydrolysis for protein extraction.
    Li Y; Xue F; Li J; Xu SH; Li D
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5352-60. PubMed ID: 26564189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Stabilization of heavy metals in sewage sludge by using a ferrous iron].
    Wang J; Fu RB; Luo QS; Zhang CB; Xu YY
    Huan Jing Ke Xue; 2010 Apr; 31(4):1036-40. PubMed ID: 20527188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of stabilization treatment on migration and transformation of heavy metals in mineral waste residues].
    Zhao SH; Chen ZL; Zhang TP; Pan WB; Peng XC; Che R; Ou YJ; Lei GJ; Zhou D
    Huan Jing Ke Xue; 2014 Apr; 35(4):1548-54. PubMed ID: 24946616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient conversion of sewage sludge into hydrochar by microwave-assisted hydrothermal carbonization.
    Wang YJ; Yu Y; Huang HJ; Yu CL; Fang HS; Zhou CH; Yin X; Chen WH; Guo XC
    Sci Total Environ; 2022 Jan; 803():149874. PubMed ID: 34492491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal leachability from sewage sludge-amended Thai soils.
    Parkpian P; Klankrong K; DeLaune R; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(5):765-91. PubMed ID: 12049116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge.
    Wang X; Li C; Li Z; Yu G; Wang Y
    Ecotoxicol Environ Saf; 2019 Jan; 168():45-52. PubMed ID: 30384166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of speciation and evaluation of ecological risk of heavy metals in sewage sludge of Guangzhou].
    Guo PR; Lei YQ; Cai DC; Zhang T; Wu R; Pan JC
    Huan Jing Ke Xue; 2014 Feb; 35(2):684-91. PubMed ID: 24812965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal carbonization of sewage sludge: The effect of feed-water pH on fate and risk of heavy metals in hydrochars.
    Zhai Y; Liu X; Zhu Y; Peng C; Wang T; Zhu L; Li C; Zeng G
    Bioresour Technol; 2016 Oct; 218():183-8. PubMed ID: 27367814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.
    Liang X; Ning XA; Chen G; Lin M; Liu J; Wang Y
    Ecotoxicol Environ Saf; 2013 Dec; 98():128-34. PubMed ID: 24094414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.
    Li C; Xie F; Ma Y; Cai T; Li H; Huang Z; Yuan G
    J Hazard Mater; 2010 Jun; 178(1-3):823-33. PubMed ID: 20197211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.