BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33254760)

  • 1. Waste plastics recycling for producing high-value carbon nanotubes: Investigation of the influence of Manganese content in Fe-based catalysts.
    He S; Xu Y; Zhang Y; Bell S; Wu C
    J Hazard Mater; 2021 Jan; 402():123726. PubMed ID: 33254760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.
    Wu C; Nahil MA; Miskolczi N; Huang J; Williams PT
    Environ Sci Technol; 2014; 48(1):819-26. PubMed ID: 24283272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials.
    Cai N; Xia S; Li X; Xiao H; Chen X; Chen Y; Bartocci P; Chen H; Williams PT; Yang H
    Waste Manag; 2021 Dec; 136():47-56. PubMed ID: 34637978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous production of high-valued carbon nanotubes and hydrogen from catalytic pyrolysis of waste plastics: The role of cellulose impurity.
    Liu Q; Peng B; Cai N; Su Y; Wang S; Wu P; Cao Q; Zhang H
    Waste Manag; 2024 Feb; 174():420-428. PubMed ID: 38104414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Preparation of Carbon Nanotubes from Waste Polyethylene Using FeNi Bimetallic Nanocatalyst.
    Li K; Zhang H; Zheng Y; Yuan G; Jia Q; Zhang S
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32756317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FeO
    Tian X; Xiao L
    J Colloid Interface Sci; 2020 Nov; 580():803-813. PubMed ID: 32731164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Converting polyolefin plastics into few-walled carbon nanotubes via a tandem catalytic process: Importance of gas composition and system configuration.
    Veksha A; Chen W; Liang L; Lisak G
    J Hazard Mater; 2022 Aug; 435():128949. PubMed ID: 35472542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of pyrolytic non-condensable gases from polypropylene co-polymer into bamboo-type carbon nanotubes and high-quality oil using biochar as catalyst.
    Shah K; Patel S; Halder P; Kundu S; Marzbali MH; Hakeem IG; Pramanik BK; Chiang K; Patel T
    J Environ Manage; 2022 Jan; 301():113791. PubMed ID: 34592670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling dechlorination and catalytic pyrolysis to produce carbon nanotubes from mixed polyvinyl chloride and polyethylene.
    Yang Y; Wang G; Lei S; Xiao H; Yang H; Chen H
    Waste Manag; 2024 Apr; 178():97-104. PubMed ID: 38382351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring Fe
    Veksha A; Bin Mohamed Amrad MZ; Chen WQ; Binte Mohamed DK; Tiwari SB; Lim TT; Lisak G
    Chemosphere; 2022 Jun; 297():134148. PubMed ID: 35240158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corn Cob Char as Catalyst Support for Developing Carbon Nanotubes from Waste Polypropylene Plastics: Comparison of Activation Techniques.
    Modekwe HU; Moothi K; Daramola MO; Mamo MA
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimetallic carbon nanotube encapsulated Fe-Ni catalysts from fast pyrolysis of waste plastics and their oxygen reduction properties.
    Cai N; Yang H; Zhang X; Xia S; Yao D; Bartocci P; Fantozzi F; Chen Y; Chen H; Williams PT
    Waste Manag; 2020 May; 109():119-126. PubMed ID: 32408095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Iron- and Nitrogen-Codoped Carbon Nanotubes from Waste Plastics Pyrolysis for the Oxygen Reduction Reaction.
    Cai N; Xia S; Zhang X; Meng Z; Bartocci P; Fantozzi F; Chen Y; Chen H; Williams PT; Yang H
    ChemSusChem; 2020 Mar; 13(5):938-944. PubMed ID: 31883349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low temperature multi-catalytic growth and growth mechanism of carbon nanotubes on carbon fiber surfaces.
    Yao Z; Xia A; Wang D; Wang C
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37783207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotubes production from real-world waste plastics and the pyrolysis behaviour.
    Zhu Y; Miao J; Zhang Y; Li C; Wang Y; Cheng Y; Long M; Wang J; Wu C
    Waste Manag; 2023 Jul; 166():141-151. PubMed ID: 37172515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen Production by Three-Stage (i) Pyrolysis, (ii) Catalytic Steam Reforming, and (iii) Water Gas Shift Processing of Waste Plastic.
    Alshareef R; Nahil MA; Williams PT
    Energy Fuels; 2023 Mar; 37(5):3894-3907. PubMed ID: 36897817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ exsolution of Fe-Ni alloy catalysts for H2 and carbon nanotube production from microwave plasma-initiated decomposition of plastic wastes.
    Zhang P; Wu M; Liang C; Luo D; Li B; Ma J
    J Hazard Mater; 2023 Mar; 445():130609. PubMed ID: 37056000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts.
    Dunens OM; MacKenzie KJ; Harris AT
    Environ Sci Technol; 2009 Oct; 43(20):7889-94. PubMed ID: 19921910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of silica-alumina support ratio on H
    Zhang Y; Tao Y; Huang J; Williams P
    Waste Manag Res; 2017 Oct; 35(10):1045-1054. PubMed ID: 28789599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, and stability of Fe-MCM-41 for production of carbon nanotubes by acetylene pyrolysis.
    Amama PB; Lim S; Ciuparu D; Yang Y; Pfefferle L; Haller GL
    J Phys Chem B; 2005 Feb; 109(7):2645-56. PubMed ID: 16851270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.