These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33254859)

  • 1. Automated release rate inversion and plume bias correction for atmospheric radionuclide leaks: A robust and general remediation to imperfect radionuclide transport modeling.
    Fang S; Zhuang S; Li X; Li H
    Sci Total Environ; 2021 Feb; 754():142140. PubMed ID: 33254859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-scenario validation of the robust inversion method with biased plume range and values.
    Dong X; Zhuang S; Xu Y; Hu H; Li X; Fang S
    J Environ Radioact; 2024 Feb; 272():107363. PubMed ID: 38160503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint release rate estimation and measurement-by-measurement model correction for atmospheric radionuclide emission in nuclear accidents: An application to wind tunnel experiments.
    Li X; Li H; Liu Y; Xiong W; Fang S
    J Hazard Mater; 2018 Mar; 345():48-62. PubMed ID: 29128726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source term determination with elastic plume bias correction.
    Tichý O; Šmídl V; Evangeliou N
    J Hazard Mater; 2022 Mar; 425():127776. PubMed ID: 34815122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific (Multi-scenario) validation of ensemble Kalman filter-based source inversion through multi-direction wind tunnel experiments.
    Sun S; Li X; Li H; Shi J; Fang S
    J Environ Radioact; 2019 Feb; 197():90-100. PubMed ID: 30544023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric plume progression as a function of time and distance from the release point for radioactive isotopes.
    Eslinger PW; Bowyer TW; Cameron IM; Hayes JC; Miley HS
    J Environ Radioact; 2015 Oct; 148():123-9. PubMed ID: 26151301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic plume episode identification and cloud shine reconstruction method for ambient gamma dose rates during nuclear accidents.
    Zhang X; Raskob W; Landman C; Trybushnyi D; Haller C; Yuan H
    J Environ Radioact; 2017 Nov; 178-179():36-47. PubMed ID: 28755565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing impacts of partial mass depletion in DNAPL source zones: II. Coupling source strength functions to plume evolution.
    Falta RW; Basu N; Rao PS
    J Contam Hydrol; 2005 Sep; 79(1-2):45-66. PubMed ID: 16061307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling an irritant gas plume for epidemiologic study.
    Jani DD; Reed D; Feigley CE; Svendsen ER
    Int J Environ Health Res; 2016; 26(1):58-74. PubMed ID: 25772143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones.
    Yang L; Wang X; Mendoza-Sanchez I; Abriola LM
    J Contam Hydrol; 2018 Apr; 211():1-14. PubMed ID: 29525038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a numerical model for sector-average plume gamma dose and its validation with dose rate measurements at Kalpakkam NPP site, India.
    Karmakar S; Srinivas CV; Rakesh PT; Gopalakrishnan V; Chandrasekaran S; Athmalingam S; Venkatraman B
    J Environ Radioact; 2022 Dec; 255():107029. PubMed ID: 36265399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Emissions from Elevated Cylindrical Bins.
    McBrien R; Ramsay S; Crooks G
    J Air Waste Manag Assoc; 1996 Aug; 46(8):725-733. PubMed ID: 28067130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial memory-based behaviors for locating sources of odor plumes.
    Grünbaum D; Willis MA
    Mov Ecol; 2015; 3(1):11. PubMed ID: 25960875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated.
    Zhang XL; Su GF; Yuan HY; Chen JG; Huang QY
    J Hazard Mater; 2014 Sep; 280():143-55. PubMed ID: 25151237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D Lagrangian particle model for direct plume gamma dose rate calculations.
    Raza S; Avila R
    J Radiol Prot; 2001 Jun; 21(2):145-54. PubMed ID: 11430515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation and sensitivity study of Micro-SWIFT SPRAY against wind tunnel experiments for air dispersion modeling with both heterogeneous topography and complex building layouts.
    Wang S; Li X; Fang S; Dong X; Li H; Zhang Q; Nibert M; Buty D; Alberge A
    J Environ Radioact; 2020 Oct; 222():106341. PubMed ID: 32778530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous optimization of dense non-aqueous phase liquid (DNAPL) source and contaminant plume remediation.
    Mayer A; Endres KL
    J Contam Hydrol; 2007 May; 91(3-4):288-311. PubMed ID: 17257707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation].
    Zhu L; Zhao LM; Wang Q; Zhang AL; Wu CQ; Li JG; Shi JX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3079-84. PubMed ID: 25752062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.