These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3325498)

  • 1. Regulation of reductive production of succinate under anaerobic conditions in baker's yeast.
    Muratsubaki H
    J Biochem; 1987 Oct; 102(4):705-14. PubMed ID: 3325498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of 14C-labelled carbon from glucose and glutamate during anaerobic growth of Saccharomyces cerevisiae.
    Albers E; Gustafsson L; Niklasson C; Lidén G
    Microbiology (Reading); 1998 Jun; 144 ( Pt 6)():1683-1690. PubMed ID: 9639938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation.
    Camarasa C; Grivet JP; Dequin S
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2669-2678. PubMed ID: 12949191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrusion of metabolites from baker's yeast during glucose-induced acidification.
    Sigler K; Knotková A; Páca J; Wurst M
    Folia Microbiol (Praha); 1980; 25(4):311-7. PubMed ID: 6998840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role in anaerobiosis of the isoenzymes for Saccharomyces cerevisiae fumarate reductase encoded by OSM1 and FRDS1.
    Camarasa C; Faucet V; Dequin S
    Yeast; 2007 May; 24(5):391-401. PubMed ID: 17345583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of beta-methylene-D,L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism.
    Fitzpatrick SM; Cooper AJ; Duffy TE
    J Neurochem; 1983 Nov; 41(5):1370-83. PubMed ID: 6619872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinate synthesis and excretion by Penicillium simplicissimum under aerobic and anaerobic conditions.
    Gallmetzer M; Meraner J; Burgstaller W
    FEMS Microbiol Lett; 2002 May; 210(2):221-5. PubMed ID: 12044678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological role of soluble fumarate reductase in redox balancing during anaerobiosis in Saccharomyces cerevisiae.
    Enomoto K; Arikawa Y; Muratsubaki H
    FEMS Microbiol Lett; 2002 Sep; 215(1):103-8. PubMed ID: 12393208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soluble fumarate reductase isoenzymes from Saccharomyces cerevisiae are required for anaerobic growth.
    Arikawa Y; Enomoto K; Muratsubaki H; Okazaki M
    FEMS Microbiol Lett; 1998 Aug; 165(1):111-6. PubMed ID: 9711846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stringent control of intermediary metabolism in Escherichia coli: pyruvate excretion by cells grown on succinate.
    Kodaki T; Murakami H; Taguchi M; Izui K; Katsuki H
    J Biochem; 1981 Nov; 90(5):1437-44. PubMed ID: 7040357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The accumulation of succinate by the yeast Brettanomyces bruxellensis.
    Sanfaçon R; Roulliard R; Heick HM
    Can J Microbiol; 1976 Feb; 22(2):213-20. PubMed ID: 1260528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of the insulin secretagogue methyl succinate by pancreatic islets.
    MacDonald MJ
    Arch Biochem Biophys; 1993 Jan; 300(1):201-5. PubMed ID: 8424653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.
    Novy V; Brunner B; Nidetzky B
    Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain.
    Cecchini G; Sices H; Schröder I; Gunsalus RP
    J Bacteriol; 1995 Aug; 177(16):4587-92. PubMed ID: 7642483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of pyc1 encoding pyruvate carboxylase isozyme I by nitrogen sources in Saccharomyces cerevisiae.
    Huet C; Menendez J; Gancedo C; François JM
    Eur J Biochem; 2000 Dec; 267(23):6817-23. PubMed ID: 11082192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The estimation of alcohol dehydrogenase activity in aerobic and anaerobic "permeabilised" baker's yeast cells.
    Israelstam GF
    Folia Microbiol (Praha); 1979; 24(6):449-54. PubMed ID: 229063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Succinate transport in Rhizobium leguminosarum.
    Finan TM; Wood JM; Jordan DC
    J Bacteriol; 1981 Oct; 148(1):193-202. PubMed ID: 7287623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of alpha-ketoglutarate by the reductive carboxylation of succinate in Bacteroides ruminicola.
    Allison MJ; Robinson IM
    J Bacteriol; 1970 Oct; 104(1):50-6. PubMed ID: 5473908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.