These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33254995)

  • 1. Bioinspired channeled, rhBMP-2-coated β-TCP scaffolds with embedded autologous vascular bundles for increased vascularization and osteogenesis of prefabricated tissue-engineered bone.
    Zhou M; Yang X; Li S; Kapat K; Guo K; Perera FH; Qian L; Miranda P; Che Y
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111389. PubMed ID: 33254995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation.
    Deng Y; Jiang C; Li C; Li T; Peng M; Wang J; Dai K
    Sci Rep; 2017 Jul; 7(1):5588. PubMed ID: 28717129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Vascularized Bone Flaps with Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Arteriovenous Bundle.
    Li B; Ruan C; Ma Y; Huang Z; Huang Z; Zhou G; Zhang J; Wang H; Wu Z; Qiu G
    Tissue Eng Part A; 2018 Sep; 24(17-18):1413-1422. PubMed ID: 29676206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotion of Osteogenesis and Angiogenesis in Vascularized Tissue-Engineered Bone Using Osteogenic Matrix Cell Sheets.
    Nakano K; Murata K; Omokawa S; Akahane M; Shimizu T; Kawamura K; Kawate K; Tanaka Y
    Plast Reconstr Surg; 2016 May; 137(5):1476-1484. PubMed ID: 27119922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold.
    Kang Y; Ren L; Yang Y
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9622-33. PubMed ID: 24858072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on osteogenic ability of chitosan/beta-tricalcium phosphate scaffold combined with human bone morphogenetic protein].
    Lai RF; Zhao QT; Liu XN; Shen S
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2010 Oct; 28(5):464-7. PubMed ID: 21179674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of Endothelial Progenitor Cells on Vascularization and Osteogenesis of Tissue-engineered Bones in Beagle Dogs].
    Wu XW; Yin J; Wei YX
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2018 Oct; 40(5):642-650. PubMed ID: 30404696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interactions between rat-adipose-derived stromal cells, recombinant human bone morphogenetic protein-2, and beta-tricalcium phosphate play an important role in bone tissue engineering.
    E LL; Xu LL; Wu X; Wang DS; Lv Y; Wang JZ; Liu HC
    Tissue Eng Part A; 2010 Sep; 16(9):2927-40. PubMed ID: 20486786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells.
    Wang L; Fan H; Zhang ZY; Lou AJ; Pei GX; Jiang S; Mu TW; Qin JJ; Chen SY; Jin D
    Biomaterials; 2010 Dec; 31(36):9452-61. PubMed ID: 20869769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion performance of low-dose recombinant human bone morphogenetic protein 2 and bone marrow-derived multipotent stromal cells in biodegradable scaffolds: a comparative study in a large animal model of anterior lumbar interbody fusion.
    Abbah SA; Lam CX; Ramruttun AK; Goh JC; Wong HK
    Spine (Phila Pa 1976); 2011 Oct; 36(21):1752-9. PubMed ID: 21673630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of different vascular carrier patterns on the angiogenesis and osteogenesis of BMSC-TCP-based tissue-engineered bone in beagle dogs.
    Wu X; Wang Q; Kang N; Wu J; Gu C; Bi J; Lv T; Xie F; Hu J; Liu X; Cao Y; Xiao R
    J Tissue Eng Regen Med; 2017 Feb; 11(2):542-552. PubMed ID: 26251084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice.
    Liang G; Yang Y; Oh S; Ong JL; Zheng C; Ran J; Yin G; Zhou D
    Biomaterials; 2005 Jul; 26(20):4265-71. PubMed ID: 15683650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synergistic effect of bone forming peptide-1 and endothelial progenitor cells to promote vascularization of tissue engineered bone.
    Wang H; Cheng H; Tang X; Chen J; Zhang J; Wang W; Li W; Lin G; Wu H; Liu C
    J Biomed Mater Res A; 2018 Apr; 106(4):1008-1021. PubMed ID: 29115001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach.
    Kang Y; Mochizuki N; Khademhosseini A; Fukuda J; Yang Y
    Acta Biomater; 2015 Jan; 11():449-58. PubMed ID: 25263031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.