BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33255059)

  • 1. Performance evaluation of poly(aniline-co-pyrrole) wrapped titanium dioxide nanocomposite as an air-cathode catalyst material for microbial fuel cell.
    Pattanayak P; Papiya F; Kumar V; Singh A; Kundu PP
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111492. PubMed ID: 33255059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfonated graphene oxide and titanium dioxide coated with nanostructured polyaniline nanocomposites as an efficient cathode catalyst in microbial fuel cells.
    Papiya F; Pattanayak P; Kumar V; Das S; Kundu PP
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110498. PubMed ID: 31924014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyaniline/β-MnO
    Zhou X; Xu Y; Mei X; Du N; Jv R; Hu Z; Chen S
    Chemosphere; 2018 May; 198():482-491. PubMed ID: 29427950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells.
    Esmaeili C; Ghasemi M; Heng LY; Hassan SHA; Abdi MM; Daud WRW; Ilbeygi H; Ismail AF
    Carbohydr Polym; 2014 Dec; 114():253-259. PubMed ID: 25263889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-light photocatalytic degradation performances and thermal stability due to the synergetic effect of TiO2 with conductive copolymers of polyaniline and polypyrrole.
    Deng F; Min L; Luo X; Wu S; Luo S
    Nanoscale; 2013 Sep; 5(18):8703-10. PubMed ID: 23900296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.
    Ansari SA; Parveen N; Han TH; Ansari MO; Cho MH
    Phys Chem Chem Phys; 2016 Apr; 18(13):9053-60. PubMed ID: 26967202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells.
    Khilari S; Pandit S; Das D; Pradhan D
    Biosens Bioelectron; 2014 Apr; 54():534-40. PubMed ID: 24333931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifunctional Manganese Ferrite/Polyaniline Hybrid as Electrode Material for Enhanced Energy Recovery in Microbial Fuel Cell.
    Khilari S; Pandit S; Varanasi JL; Das D; Pradhan D
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20657-66. PubMed ID: 26315619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen reduction reaction activity and the microbial community in response to magnetite coordinating nitrogen-doped carbon catalysts in bioelectrochemical systems.
    Zhou H; Yang Y; You S; Liu B; Ren N; Xing D
    Biosens Bioelectron; 2018 Dec; 122():113-120. PubMed ID: 30245323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.
    Wang Y; Wu J; Yang S; Li H; Li X
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29954125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving bioelectrochemical performance by sulfur-doped titanium dioxide cooperated with Zirconium based metal-organic framework (S-TiO
    Qi Q; Huang G; Li R; Yu J; Chen X; Liu Z; Liu Y; Wang R; Yang Y; Chen J
    Bioresour Technol; 2024 Feb; 394():130288. PubMed ID: 38181999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving oxygen reduction reaction of microbial fuel cell by titanium dioxide attaching to dual metal organic frameworks as cathode.
    Yang J; Chen J; Wang X; Yang D; Zhang Y; Wu Y; Zhao Y; Wang Y; Wei Q; Wang R; Liu Y; Yang Y
    Bioresour Technol; 2022 Apr; 349():126851. PubMed ID: 35176464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous nitrogen-doped carbon nanosheet on graphene as metal-free catalyst for oxygen reduction reaction in air-cathode microbial fuel cells.
    Wen Q; Wang S; Yan J; Cong L; Chen Y; Xi H
    Bioelectrochemistry; 2014 Feb; 95():23-8. PubMed ID: 24239870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cu-doped CaFeO
    Zhang H; Shi H; You H; Su M; Huang L; Zhou Z; Zhang C; Zuo J; Yan J; Xiao T; Liu X; Xu T
    Environ Res; 2022 Nov; 214(Pt 3):113968. PubMed ID: 35964675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells.
    Qiao Y; Bao SJ; Li CM; Cui XQ; Lu ZS; Guo J
    ACS Nano; 2008 Jan; 2(1):113-9. PubMed ID: 19206554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites.
    Duong NH; Nguyen TT; Nguyen DT; Le HT
    Sensors (Basel); 2011; 11(2):1924-31. PubMed ID: 22319389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved cathodic oxygen reduction and bioelectricity generation of electrochemical reactor based on reduced graphene oxide decorated with titanium-based composites.
    Li M; Bi YG; Xiang L; Chen XT; Qin YJ; Mo CH; Zhou SQ
    Bioresour Technol; 2020 Jan; 296():122319. PubMed ID: 31689612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile one-pot microwave assisted synthesis of rGO-CuS-ZnS hybrid nanocomposite cathode catalysts for microbial fuel cell application.
    Mahalingam S; Ayyaru S; Ahn YH
    Chemosphere; 2021 Sep; 278():130426. PubMed ID: 34126679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced performance of microbial fuel cells using Ag nanoparticles modified Co, N co-doped carbon nanosheets as bifunctional cathode catalyst.
    Jiang PY; Xiao ZH; Wang YF; Li N; Liu ZQ
    Bioelectrochemistry; 2021 Apr; 138():107717. PubMed ID: 33333455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyelectrolyte-single wall carbon nanotube composite as an effective cathode catalyst for air-cathode microbial fuel cells.
    Wu H; Lu M; Guo L; Bay LG; Zhang Z; Li SF
    Water Sci Technol; 2014; 70(10):1610-6. PubMed ID: 25429448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.