These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 33255081)

  • 1. Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement.
    Baptista R; Guedes M
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111528. PubMed ID: 33255081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porosity and pore design influence on fatigue behavior of 3D printed scaffolds for trabecular bone replacement.
    Baptista R; Guedes M
    J Mech Behav Biomed Mater; 2021 May; 117():104378. PubMed ID: 33610021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization.
    Velioglu ZB; Pulat D; Demirbakan B; Ozcan B; Bayrak E; Erisken C
    Connect Tissue Res; 2019 May; 60(3):274-282. PubMed ID: 30058375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study.
    Bodnárová S; Gromošová S; Hudák R; Rosocha J; Živčák J; Plšíková J; Vojtko M; Tóth T; Harvanová D; Ižariková G; Danišovič Ľ
    Acta Bioeng Biomech; 2019; 21(4):101-110. PubMed ID: 32022801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties.
    Guo W; Yang Y; Liu C; Bu W; Guo F; Li J; Wang E; Peng Z; Mai H; You H; Long Y
    J Mech Behav Biomed Mater; 2023 Jun; 142():105848. PubMed ID: 37099921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Establishment of a 3D printing system for bone tissue engineering scaffold fabrication and the evaluation of its controllability over macro and micro structure precision].
    Li R; Chen KL; Wang Y; Liu YS; Zhou YS; Sun YC
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Feb; 51(1):115-119. PubMed ID: 30773555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds.
    Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the mechanical properties of a bony scaffold for comminuted distal radial fractures: Addition of akermanite nanoparticles and using a freeze-drying technique.
    Dong X; Heidari A; Mansouri A; Hao WS; Dehghani M; Saber-Samandari S; Toghraie D; Khandan A
    J Mech Behav Biomed Mater; 2021 Sep; 121():104643. PubMed ID: 34139482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.
    Senatov FS; Niaza KV; Zadorozhnyy MY; Maksimkin AV; Kaloshkin SD; Estrin YZ
    J Mech Behav Biomed Mater; 2016 Apr; 57():139-48. PubMed ID: 26710259
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Noroozi R; Shamekhi MA; Mahmoudi R; Zolfagharian A; Asgari F; Mousavizadeh A; Bodaghi M; Hadi A; Haghighipour N
    Biomed Mater; 2022 Jun; 17(4):. PubMed ID: 35609602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Idealization through interactive modeling and experimental assessment of 3D-printed gyroid for trabecular bone scaffold.
    Tripathi Y; Shukla M; Bhatt AD
    Proc Inst Mech Eng H; 2021 Sep; 235(9):1025-1034. PubMed ID: 34058889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration.
    Zhou X; Zhou G; Junka R; Chang N; Anwar A; Wang H; Yu X
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111420. PubMed ID: 33113493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications.
    Barbosa TV; Dernowsek JA; Tobar RJR; Casali BC; Fortulan CA; Ferreira EB; Selistre-de-Araújo HS; Branciforti MC
    Biomed Mater; 2022 Aug; 17(5):. PubMed ID: 35948004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimisation of the additive manufacturing parameters of polylactic acid (PLA) cellular structures for biomedical applications.
    Myers D; Abdel-Wahab A; Hafeez F; Kovacev N; Essa K
    J Mech Behav Biomed Mater; 2022 Dec; 136():105447. PubMed ID: 36272224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.