These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33255323)

  • 41. [Construction of eukaryotic expression vector for human glial derived neurotrophic factor and its expression in spinal cord tissue of SD rat].
    Li Q; Zeng B; Xu J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 May; 21(5):482-6. PubMed ID: 17578287
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combination of grafted Schwann cells and lentiviral-mediated prevention of glial scar formation improve recovery of spinal cord injured rats.
    Do-Thi A; Perrin FE; Desclaux M; Saillour P; Amar L; Privat A; Mallet J
    J Chem Neuroanat; 2016 Oct; 76(Pt A):48-60. PubMed ID: 26744118
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous application of two neurotrophic factors after spinal cord injury.
    Bohnert DM; Purvines S; Shapiro S; Borgens RB
    J Neurotrauma; 2007 May; 24(5):846-63. PubMed ID: 17518539
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury.
    Hachmann JT; Yousak A; Wallner JJ; Gad PN; Edgerton VR; Gorgey AS
    J Neurophysiol; 2021 Dec; 126(6):1843-1859. PubMed ID: 34669485
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combined Supra- and Sub-Lesional Epidural Electrical Stimulation for Restoration of the Motor Functions after Spinal Cord Injury in Mini Pigs.
    Fadeev F; Eremeev A; Bashirov F; Shevchenko R; Izmailov A; Markosyan V; Sokolov M; Kalistratova J; Khalitova A; Garifulin R; Islamov R; Lavrov I
    Brain Sci; 2020 Oct; 10(10):. PubMed ID: 33081405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stereotactic radiosurgery improves locomotor recovery after spinal cord injury in rats.
    Zeman RJ; Wen X; Ouyang N; Rocchio R; Shih L; Alfieri A; Moorthy C; Etlinger JD
    Neurosurgery; 2008 Nov; 63(5):981-7; discussion 987-8. PubMed ID: 19005390
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chondroitinase gene therapy improves upper limb function following cervical contusion injury.
    James ND; Shea J; Muir EM; Verhaagen J; Schneider BL; Bradbury EJ
    Exp Neurol; 2015 Sep; 271():131-5. PubMed ID: 26044197
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects cortical neurons from dying following a traumatic brain injury.
    Minnich JE; Mann SL; Stock M; Stolzenbach KA; Mortell BM; Soderstrom KE; Bohn MC; Kozlowski DA
    Restor Neurol Neurosci; 2010; 28(3):293-309. PubMed ID: 20479525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comprehensive Effects of Suppression of MicroRNA-383 in Human Bone-Marrow-Derived Mesenchymal Stem Cells on Treating Spinal Cord Injury.
    Wei GJ; Zheng KW; An G; Shi ZW; Wang KF; Guan Y; Wang YS; Li PF; Dong DM
    Cell Physiol Biochem; 2018; 47(1):129-139. PubMed ID: 29763918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tail nerve electrical stimulation combined with scar ablation and neural transplantation promotes locomotor recovery in rats with chronically contused spinal cord.
    Zhang SX; Huang F; Gates M; Holmberg EG
    Brain Res; 2012 May; 1456():22-35. PubMed ID: 22516110
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Therapeutic Use of 3β-[N-(N',N'-Dimethylaminoethane) Carbamoyl] Cholesterol-Modified PLGA Nanospheres as Gene Delivery Vehicles for Spinal Cord Injury.
    Gwak SJ; Yun Y; Yoon DH; Kim KN; Ha Y
    PLoS One; 2016; 11(1):e0147389. PubMed ID: 26824765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sox11 promotes endogenous neurogenesis and locomotor recovery in mice spinal cord injury.
    Guo Y; Liu S; Zhang X; Wang L; Zhang X; Hao A; Han A; Yang J
    Biochem Biophys Res Commun; 2014 Apr; 446(4):830-5. PubMed ID: 24589730
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury.
    Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM
    Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adverse effects of epidural spinal cord stimulation on bladder function in a patient with chronic spinal cord injury pain.
    Loubser PG
    J Pain Symptom Manage; 1997 May; 13(5):251-2. PubMed ID: 9185428
    [No Abstract]   [Full Text] [Related]  

  • 57. Genetically modified Schwann cells producing glial cell line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury.
    Liu G; Wang X; Shao G; Liu Q
    Mol Med Rep; 2014 Apr; 9(4):1305-12. PubMed ID: 24549701
    [TBL] [Abstract][Full Text] [Related]  

  • 58. X-irradiation of the contusion site improves locomotor and histological outcomes in spinal cord-injured rats.
    Zeman RJ; Feng Y; Peng H; Visintainer PF; Moorthy CR; Couldwell WT; Etlinger JD
    Exp Neurol; 2001 Nov; 172(1):228-34. PubMed ID: 11681855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overexpressing neuroglobin improves functional recovery by inhibiting neuronal apoptosis after spinal cord injury.
    Lan WB; Lin JH; Chen XW; Wu CY; Zhong GX; Zhang LQ; Lin WP; Liu WN; Li X; Lin JL
    Brain Res; 2014 May; 1562():100-8. PubMed ID: 24675030
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury.
    Zhou L; Shine HD
    J Neurosci Res; 2003 Oct; 74(2):221-6. PubMed ID: 14515351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.