These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 33255426)
1. Overshooting Subcellular Redox-Responses in Rett-Mouse Hippocampus during Neurotransmitter Stimulation. Festerling K; Can K; Kügler S; Müller M Cells; 2020 Nov; 9(12):. PubMed ID: 33255426 [TBL] [Abstract][Full Text] [Related]
2. Oxidative burden and mitochondrial dysfunction in a mouse model of Rett syndrome. Grosser E; Hirt U; Janc OA; Menzfeld C; Fischer M; Kempkes B; Vogelgesang S; Manzke TU; Opitz L; Salinas-Riester G; Müller M Neurobiol Dis; 2012 Oct; 48(1):102-14. PubMed ID: 22750529 [TBL] [Abstract][Full Text] [Related]
3. Neuronal Redox-Imbalance in Rett Syndrome Affects Mitochondria as Well as Cytosol, and Is Accompanied by Intensified Mitochondrial O Can K; Menzfeld C; Rinne L; Rehling P; Kügler S; Golubiani G; Dudek J; Müller M Front Physiol; 2019; 10():479. PubMed ID: 31114506 [TBL] [Abstract][Full Text] [Related]
4. Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence. Bebensee DF; Can K; Müller M Oxid Med Cell Longev; 2017; 2017():3064016. PubMed ID: 28894505 [TBL] [Abstract][Full Text] [Related]
5. Disturbed redox homeostasis and oxidative stress: Potential players in the developmental regression in Rett syndrome. Müller M Neurosci Biobehav Rev; 2019 Mar; 98():154-163. PubMed ID: 30639673 [TBL] [Abstract][Full Text] [Related]
6. Impaired hippocampal Ca2+ homeostasis and concomitant K+ channel dysfunction in a mouse model of Rett syndrome during anoxia. Kron M; Müller M Neuroscience; 2010 Nov; 171(1):300-15. PubMed ID: 20732392 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. De Filippis B; Valenti D; de Bari L; De Rasmo D; Musto M; Fabbri A; Ricceri L; Fiorentini C; Laviola G; Vacca RA Free Radic Biol Med; 2015 Jun; 83():167-77. PubMed ID: 25708779 [TBL] [Abstract][Full Text] [Related]
8. Redox Indicator Mice Stably Expressing Genetically Encoded Neuronal roGFP: Versatile Tools to Decipher Subcellular Redox Dynamics in Neuropathophysiology. Wagener KC; Kolbrink B; Dietrich K; Kizina KM; Terwitte LS; Kempkes B; Bao G; Müller M Antioxid Redox Signal; 2016 Jul; 25(1):41-58. PubMed ID: 27059697 [TBL] [Abstract][Full Text] [Related]
9. H(2)O(2)-mediated modulation of cytosolic signaling and organelle function in rat hippocampus. Gerich FJ; Funke F; Hildebrandt B; Fasshauer M; Müller M Pflugers Arch; 2009 Sep; 458(5):937-52. PubMed ID: 19430810 [TBL] [Abstract][Full Text] [Related]
10. Aberrant redox homoeostasis and mitochondrial dysfunction in Rett syndrome. Müller M; Can K Biochem Soc Trans; 2014 Aug; 42(4):959-64. PubMed ID: 25109986 [TBL] [Abstract][Full Text] [Related]
11. Dynamic, semi-quantitative imaging of intracellular ROS levels and redox status in rat hippocampal neurons. Funke F; Gerich FJ; Müller M Neuroimage; 2011 Feb; 54(4):2590-602. PubMed ID: 21081169 [TBL] [Abstract][Full Text] [Related]
12. Regenerative glutamate release in the hippocampus of Rett syndrome model mice. Balakrishnan S; Mironov SL PLoS One; 2018; 13(9):e0202802. PubMed ID: 30256804 [TBL] [Abstract][Full Text] [Related]
13. Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome. Filosa S; Pecorelli A; D'Esposito M; Valacchi G; Hajek J Free Radic Biol Med; 2015 Nov; 88(Pt A):81-90. PubMed ID: 25960047 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of rapid reactive oxygen species generation in response to cytosolic Ca2+ or Zn2+ loads in cortical neurons. Clausen A; McClanahan T; Ji SG; Weiss JH PLoS One; 2013; 8(12):e83347. PubMed ID: 24340096 [TBL] [Abstract][Full Text] [Related]
15. The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome. Janc OA; Müller M Front Cell Neurosci; 2014; 8():56. PubMed ID: 24605086 [TBL] [Abstract][Full Text] [Related]
16. Enhanced hypoxia susceptibility in hippocampal slices from a mouse model of rett syndrome. Fischer M; Reuter J; Gerich FJ; Hildebrandt B; Hägele S; Katschinski D; Müller M J Neurophysiol; 2009 Feb; 101(2):1016-32. PubMed ID: 19073793 [TBL] [Abstract][Full Text] [Related]
17. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome. Signorini C; De Felice C; Leoncini S; Møller RS; Zollo G; Buoni S; Cortelazzo A; Guerranti R; Durand T; Ciccoli L; D'Esposito M; Ravn K; Hayek J PLoS One; 2016; 11(3):e0150101. PubMed ID: 26930212 [TBL] [Abstract][Full Text] [Related]
18. Neonatal exposure to low dose corticosterone persistently modulates hippocampal mineralocorticoid receptor expression and improves locomotor/exploratory behaviour in a mouse model of Rett syndrome. De Filippis B; Ricceri L; Fuso A; Laviola G Neuropharmacology; 2013 May; 68():174-83. PubMed ID: 22709945 [TBL] [Abstract][Full Text] [Related]
19. Impaired mitochondrial quality control in Rett Syndrome. Crivellari I; Pecorelli A; Cordone V; Marchi S; Pinton P; Hayek J; Cervellati C; Valacchi G Arch Biochem Biophys; 2021 Mar; 700():108790. PubMed ID: 33549528 [TBL] [Abstract][Full Text] [Related]
20. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors. Li W; Xu X; Pozzo-Miller L Proc Natl Acad Sci U S A; 2016 Mar; 113(11):E1575-84. PubMed ID: 26929363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]