BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33255621)

  • 1. Smooth Muscle Cell Responses to Poly(ε-Caprolactone) Triacrylate Networks with Different Crosslinking Time.
    Wang J; Liu L; Wang A; Liu X; Zhang Y; Wang Z; Dou J
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links.
    Wang K; Cai L; Hao F; Xu X; Cui M; Wang S
    Biomacromolecules; 2010 Oct; 11(10):2748-59. PubMed ID: 20822174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable photo-crosslinked polymer substrates with concentric microgrooves for regulating MC3T3-E1 cell behavior.
    Wang K; Cai L; Zhang L; Dong J; Wang S
    Adv Healthc Mater; 2012 May; 1(3):292-301. PubMed ID: 23184743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-crosslinked poly(epsilon-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations.
    Wang S; Yaszemski MJ; Knight AM; Gruetzmacher JA; Windebank AJ; Lu L
    Acta Biomater; 2009 Jun; 5(5):1531-42. PubMed ID: 19171506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity.
    Lee J; Yoo JJ; Atala A; Lee SJ
    Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation.
    Cai L; Guinn AS; Wang S
    Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of hydroxyapatite allocation and microgroove dimension in promoting preosteoblastic cell functions on photocured polymer nanocomposites through nuclear distribution and alignment.
    Henry MG; Cai L; Liu X; Zhang L; Dong J; Chen L; Wang Z; Wang S
    Langmuir; 2015 Mar; 31(9):2851-60. PubMed ID: 25710252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications.
    Green BJ; Worthington KS; Thompson JR; Bunn SJ; Rethwisch M; Kaalberg EE; Jiao C; Wiley LA; Mullins RF; Stone EM; Sohn EH; Tucker BA; Guymon CA
    Biomacromolecules; 2018 Sep; 19(9):3682-3692. PubMed ID: 30044915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate.
    Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW
    Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone).
    Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K
    J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligo(epsilon-caprolactone)-based polymer networks prepared by photocrosslinking in solution.
    Friess F; Wischke C; Behl M; Lendlein A
    J Appl Biomater Funct Mater; 2012; 10(3):273-9. PubMed ID: 23242870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications.
    Davis KA; Burdick JA; Anseth KS
    Biomaterials; 2003 Jun; 24(14):2485-95. PubMed ID: 12695075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A collagen/smooth muscle cell-incorporated elastic scaffold for tissue-engineered vascular grafts.
    Park IS; Kim SH; Kim YH; Kim IH; Kim SH
    J Biomater Sci Polym Ed; 2009; 20(11):1645-60. PubMed ID: 19619403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ε-caprolactone) films with favourable properties for neural cell growth.
    Diban N; Ramos-Vivas J; Remuzgo-Martinez S; Ortiz I; Urtiaga A
    Curr Top Med Chem; 2014; 14(23):2743-9. PubMed ID: 25515744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of biodegradable networks by photo-crosslinking lactide, epsilon-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester.
    Grijpma DW; Hou Q; Feijen J
    Biomaterials; 2005 Jun; 26(16):2795-802. PubMed ID: 15603775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological properties of a bionic scaffold for esophageal tissue engineering research.
    Hou R; Wang X; Wei Q; Feng P; Mou X; Zhu Y; Shen Z
    Colloids Surf B Biointerfaces; 2019 Jul; 179():208-217. PubMed ID: 30959233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of cross-linked poly[(epsilon-caprolactone)-co-lactide] and biocompatibility studies for tissue engineering materials.
    Miyasako H; Yamamoto K; Nakao A; Aoyagi T
    Macromol Biosci; 2007 Jan; 7(1):76-83. PubMed ID: 17238234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocured biodegradable polymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation.
    Cai L; Zhang L; Dong J; Wang S
    Langmuir; 2012 Aug; 28(34):12557-68. PubMed ID: 22857011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.