These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 33255749)

  • 1. Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy.
    Picazo-Aragonés J; Terrab A; Balao F
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile Organic Compounds from Orchids: From Synthesis and Function to Gene Regulation.
    Ramya M; Jang S; An HR; Lee SY; Park PM; Park PH
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32050562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulators involved in responses to volatile organic compounds in plants.
    Nagashima A; Higaki T; Koeduka T; Ishigami K; Hosokawa S; Watanabe H; Matsui K; Hasezawa S; Touhara K
    J Biol Chem; 2019 Feb; 294(7):2256-2266. PubMed ID: 30593507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis, function and metabolic engineering of plant volatile organic compounds.
    Dudareva N; Klempien A; Muhlemann JK; Kaplan I
    New Phytol; 2013 Apr; 198(1):16-32. PubMed ID: 23383981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.
    Kegge W; Ninkovic V; Glinwood R; Welschen RA; Voesenek LA; Pierik R
    Ann Bot; 2015 May; 115(6):961-70. PubMed ID: 25851141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolism of volatile organic compounds influences plant survival.
    Oikawa PY; Lerdau MT
    Trends Plant Sci; 2013 Dec; 18(12):695-703. PubMed ID: 24060580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile terpenes - mediators of plant-to-plant communication.
    Rosenkranz M; Chen Y; Zhu P; Vlot AC
    Plant J; 2021 Nov; 108(3):617-631. PubMed ID: 34369010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drought and leaf herbivory influence floral volatiles and pollinator attraction.
    Burkle LA; Runyon JB
    Glob Chang Biol; 2016 Apr; 22(4):1644-54. PubMed ID: 26546275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained defense response via volatile signaling and its epigenetic transcriptional regulation.
    Onosato H; Fujimoto G; Higami T; Sakamoto T; Yamada A; Suzuki T; Ozawa R; Matsunaga S; Seki M; Ueda M; Sako K; Galis I; Arimura GI
    Plant Physiol; 2022 Jun; 189(2):922-933. PubMed ID: 35201346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth.
    Fincheira P; Quiroz A; Tortella G; Diez MC; Rubilar O
    Microbiol Res; 2021 Jun; 247():126726. PubMed ID: 33640574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bidirectional Interaction between Phyllospheric Microbiotas and Plant Volatile Emissions.
    Farré-Armengol G; Filella I; Llusia J; Peñuelas J
    Trends Plant Sci; 2016 Oct; 21(10):854-860. PubMed ID: 27401253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smelling global climate change: mitigation of function for plant volatile organic compounds.
    Yuan JS; Himanen SJ; Holopainen JK; Chen F; Stewart CN
    Trends Ecol Evol; 2009 Jun; 24(6):323-31. PubMed ID: 19324451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias?
    Schiestl FP; Dötterl S
    Evolution; 2012 Jul; 66(7):2042-55. PubMed ID: 22759283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A portion of plant airborne communication is endorsed by uptake and metabolism of volatile organic compounds.
    Matsui K
    Curr Opin Plant Biol; 2016 Aug; 32():24-30. PubMed ID: 27281633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant Responses to Herbivory, Wounding, and Infection.
    Mostafa S; Wang Y; Zeng W; Jin B
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learned and naïve natural enemy responses and the interpretation of volatile organic compounds as cues or signals.
    Allison JD; Daniel Hare J
    New Phytol; 2009 Dec; 184(4):768-82. PubMed ID: 19807871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [DNA methylation regulating factors in plants].
    Xia H; Liu MQ; Yin WL; Lu CF; Xia XL
    Yi Chuan; 2008 Apr; 30(4):426-32. PubMed ID: 18424412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular plant volatile communication.
    Holopainen JK; Blande JD
    Adv Exp Med Biol; 2012; 739():17-31. PubMed ID: 22399393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth.
    Syed-Ab-Rahman SF; Carvalhais LC; Chua ET; Chung FY; Moyle PM; Eltanahy EG; Schenk PM
    Sci Total Environ; 2019 Nov; 692():267-280. PubMed ID: 31349168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and epigenetic aspects of polyploid evolution in plants.
    Madlung A; Wendel JF
    Cytogenet Genome Res; 2013; 140(2-4):270-85. PubMed ID: 23751292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.